Missions to Mars: GSI will investigate radiation risks for astronauts

April 14, 2008
Missions to Mars
View inside the 120 meters long accelerator UNILAC at GSI used to generate the ion beams. Credit: G. Otto

The European Space Agency (ESA) has chosen the GSI accelerator facility to assess radiation risks that astronauts will be exposed to on a Mars mission. GSI was selected because its accelerator is the only one in Europe able to create ion beams similar to those found in space. To determine possible health risks of manned space flights, scientists from all over Europe have been asked to investigate the effects of ion beams in human cells and organs. The first experiments will be launched this year and subsequently continued at GSI’s planned FAIR accelerator system.

Astronauts flying to the moon or Mars would be constantly bombarded by cosmic rays, whose health risks are not known in detail. Unlike the situation in space, the earth’s surface is largely shielded from cosmic rays by the planet’s atmosphere and magnetic field. In general, radiation can damage human cells and their genetic material. In addition to causing cancer, it can directly kill cells, which can later result in extensive damage in tissues including the brain.

The aim of the planned research activities is to quantitatively examine the biological effects of ion beams on the human genome and to determine how these effects would manifest themselves over time. For these tests, scientists will irradiate molecules and cell and tissue samples. The results of the research could then be used to develop optimized radiation shields for space exploration, which are a prerequisite for conducting safe missions to Mars.

The ion beams found in space have a wide variety of sources and can be derived from all types of elements, ranging from the lightest, hydrogen, to the heaviest, uranium. GSI’s accelerator facility can generate all types of ion beams, making it particularly well-suited for the planned research project. The research possibilities will be greatly expanded in the future by the FAIR accelerator facility, which will be able to produce even more energetic and intense ion beams.

Source: Helmholtz Association of German Research Centres

Explore further: Ion space drive is said to break fuel efficiency record

Related Stories

Fortifying computer chips for space travel

September 7, 2015

Space is cold, dark, and lonely. Deadly, too, if any one of a million things goes wrong on your spaceship. It's certainly no place for a computer chip to fail, which can happen due to the abundance of radiation bombarding ...

The moon

September 21, 2015

Look up in the night sky. On a clear night, if you're lucky, you'll catch a glimpse of the moon shining in all it's glory. As Earth's only satellite, the moon has orbited our planet for over three and a half billion years. ...

CARS: A brand-by-brand look at new 2016 models

September 8, 2015

The 2016 model year has plenty of workhorses, including new versions of the Toyota Tacoma and Nissan Titan pickups, Chevrolet Malibu and Kia Optima sedans and the Honda Civic small car.

Recommended for you

Dead comets and near-earth encounters

October 13, 2015

Near Earth Objects (NEOs) are asteroids or comets whose orbits sometimes bring them close to the Earth, thereby posing a potentially threat. The asteroid that struck Chelyabinsk last year was an NEO about 40 meters in diameter. ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (1) Apr 14, 2008
Didn't I read on a recent physorg entry that nanotubes filled with copper and surrounded by lithium would convert radiation directly into electricity?
3.5 / 5 (2) Apr 14, 2008
Near light speed propulsion would reduce transit time to Mars thereby reducing radiation exposure.
3 / 5 (1) Apr 14, 2008
Yes, lets jump in our Vulvox near light speed spaceships (patent pending) and fly across the Universe. What are we waiting for?

"shielded from cosmic rays by the planet%u2019s atmosphere and magnetic field"

Can we not produce a similar technology? A magnetic field bubble?
4 / 5 (2) Apr 15, 2008
Yes Earls
However the mass costs (in magnets and extra energy costs) with our current technology make this method not currently practical. You would get as much radiation shielding from just the mass of the magnets as you would the magnetic field.
But there are some neat developments on the horizon that may make this possible soon.
5 / 5 (1) Apr 15, 2008
Here is a near light speed propulsion engine just unveiled that uses energy from space.

3 / 5 (2) Jul 25, 2008
Any long-distance trek to our solar system planets/ateroids will require large amounts of water, which also provides a good anti-radiation shield.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.