Memory in artificial atoms

Apr 07, 2008

Nanophysicists have made a discovery that can change the way we store data on our computers. This means that in the future we can store data much faster, and more accurate. Their discovery has been published in the scientific journal Nature Physics.

Your computer has two equally important elements: computing power and memory. Traditionally, scientists have developed these two elements in parallel. Computermemory is constructed from magnetic components, while the media of computing is electrical signals. The discovery of the scientists at University of Copenhagen, Jonas Hauptmann, Jens Paaske and Poul Erik Lindelof, is a step on the way towards a new means of data-storage, in which electricity and magnetism are combined in a new transistor concept.

Jonas Hauptmann, PhD student, has carried out the experiments under supervision of Professor Poul Erik Lindelof.

Jonas Hauptmann says: "We are the first to obtain direct electrical control of the smallest magnets in nature, one single electron spin. This has vast perspectives in the long run. In our experiments, we use carbon nanotubes as transistors. We have placed the nanotubes between magnetic electrodes and we have shown, that the direction of a single electron spin caught on the nanotube can be controlled directly by an electric potential. One can picture this single electron spin caught on the nanotube as an artificial atom."

Direct electrical control over a single electron spin has been acknowledged as a theoretical possibility for several years. Nevertheless, in spite of many zealous attempts worldwide, it is only now with this experiment that the mechanism has been demonstrated in practice. This is why the discovery of the scientists has attracted a lot of interest.

Professor at Nano-Science Center and the Niels Bohr Institute, Jens Paaske, has been in charge of the data analysis.

Jens Paaske says: "Transistors are important components in every electronic device. We work with a completely new transistor concept, in which a carbon nanotube or a single organic molecule takes the place of the traditional semi-conductor transistor. Our discovery shows that the new transistor can function as a magnetic memory."

Source: University of Copenhagen

Explore further: Researchers develop ultrahigh-resolution 3D microscopy technique for electric fields

Related Stories

Researchers detect spin precession in silicon nanowires

Jun 24, 2015

Scientists at the U.S. Naval Research Laboratory (NRL) have reported the first observation of spin precession of spin currents flowing in a silicon nanowire (NW) transport channel, and determined spin lifetimes ...

Researchers first to create a single-molecule diode

May 25, 2015

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they ...

Recommended for you

Could black phosphorus be the next silicon?

19 hours ago

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Apr 08, 2008
> Your computer has two equally important elements: computing power and memory. (...) Computer memory is constructed from magnetic components, while the media of computing is electrical signals.

This is completely wrong, so in case you are unfamiliar with computers don't base your ideas on this erroneous oversimplification. There are many important elements in computers besides memory and processor (communication, storage, interface, power supply). Both computing and memory are predominantly based on electrical signals, although hard disks do use magnetoelectric effects memory like SRAM, DRAM and flash are all based on electrical signals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.