Researchers light up lungs to help diagnose disease

Apr 28, 2008
Researchers light up lungs to help diagnose disease
An image of a person's lung who has emphysema. Credit: The University of Sheffield

Researchers at the University of Sheffield have developed innovative technology which illuminates a person’s lungs and helps clinicians identify if they are functioning correctly. The new technology could result in earlier diagnosis of emphysema and smoking related damage, as well as other lung conditions and diseases.

Lung diseases are of growing concern to the health of the nation, with people suffering from conditions as mild as asthma or as severe as lung cancer. By detecting lung damage early, doctors could help slow down or stop the conditions.

The technique developed at Sheffield involves a person inhaling small amounts of harmless hyperpolarised (HP) noble gases (Helium-3 and Xenon-129), which are then imaged inside an MRI scanner. The gases are hyperpolarised using high power lasers by a process called optical pumping. The high resolution images of the airspaces that are produced offer additional functional information that is currently not available with traditional X-rays and lung CT scans.

The first clinical studies using this novel method have been carried out at the University of Sheffield, with the University holding the only UK regulatory licence to administer hyperpolarised gases for lung imaging.

Images obtained of lungs so far are shedding new light on a variety of different lung conditions and diseases. Tests carried out on smokers, for example, have shown signs of early emphysema.

The technology has also been used to help detect the early stages of lung obstruction in children with Cystic Fibrosis, something which a traditional X-ray would miss. The technique also allows repeated investigations in children without the fear of radiation exposure.

The researchers are also now looking at using the technology to assess inhaled therapies for asthma patients and help plan radiotherapy treatment in patients with lung cancer.

Jim Wild, a physicist from the University’s Academic Unit of Radiology and the lead academic involved in the project, said: “The images produced are providing clinicians with functional information of the lungs that has previously been unattainable. The high sensitivity of the technology means that it offers real hope for detecting lung damage early.

“Being able to detect lung conditions and disease at an early stage could radically affect the lifespan and quality of life of patients. For children with cystic fibrosis it means that, with the right treatment, they could live longer. Patients who have successfully stopped smoking can also see how they can halt or slow down the damage being done to their lungs.”

Source: University of Sheffield

Explore further: New strategies against rare, fatal lung syndrome

Related Stories

'Pick and mix' smart materials for robotics

5 hours ago

Researchers from the University of Cambridge have developed a simple 'recipe' for combining multiple materials with single functions into a single material with multiple functions: movement, recall of movement ...

Study concludes that racehorses are getting faster

5 hours ago

Despite a general consensus among scientists and in the racing industry that racehorse speed has plateaued, a new study from the University of Exeter has found that racehorses are getting quicker. Further ...

Recommended for you

New strategies against rare, fatal lung syndrome

8 hours ago

Hermansky-Pudlak syndrome (HPS) patients suffer symptoms including albinism, visual impairment, and slow blood clotting, but what makes some versions of the genetic condition fatal is that patients with some ...

How a newborn baby sees you

15 hours ago

A newborn infant can see its parents' expressions at a distance of 30 cm. For the first time researchers have managed to reconstruct infants visual perception of the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.