Laser dissection of depression

April 22, 2008

Chinese investigators from Hefei and Dutch researchers in Amsterdam have collaborated using for the first time a combination of new elegant methodology in Depression research. They used postmortem human brain tissue that was donated to the Netherlands Brain Bank for research purposes and investigated a region in the basal part of the brain, the hypothalamus, that is known to be of crucial importance for the development of symptoms of depression.

This region is 6 mm3 large and is called the Paraventricular Nucleus (PVN) since it is situated along the third ventricle of the brain. This brain area is central in the regulations of our normal stress response, while a too high activity of the PVN is a pivotal characteristic of depression.

The hypothalamus consists of a large number of very small specialized cell groups that all have different functions and should thus be studied separately, hence the necessity of the application of the methodology used.

Corticotrophin-releasing factor (CRF) cells in the PVN of human hypothalamus are the central driving force of the stress response and are hyperactive in depression. The investigators sampled the PVN using new technology in psychiatry to study its molecular changes related to CRF.

Frozen hypothalami of 7 depressed patients and 7 controls of the same age, the same sex and obtained the same time after death. The frozen brain structures were serially sectioned and the PVN was dissected using a microscope with a laser beam. The micro-laser-dissected material was subsequently studied with a very sensitive and specific quantitative molecular technique for the analysis of gene expression (qPCR).

From the 16 gene products that were studied, because they were presumed to be involved in CRF activation in depression, 5 were found to show significant changes. The molecular changes found may not only explain the hyperactivity of the CRF cells but may also be potential targets for new therapeutic strategies.

Source: Molecular Psychiatry

Related Stories

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.