Largest ever study of genetics of common disease just got bigger

April 14, 2008

DNA samples from 120,000 people are to be analysed in a £30 million follow up to last year's Wellcome Trust Case Control Consortium (WTCCC), the largest ever study of the genetics behind common diseases. The seven-fold increase in the number of samples to be analysed will allow researchers to look at a 25 diseases as well as studying the genetics of learning in children and individuals' responses to statins.

Funded by the Wellcome Trust, this new series of genome-wide association studies will be one of the most ambitious initiatives ever undertaken, bringing together leading research groups from at least 60 institutions internationally (including over 20 from the UK). Over the next two years, working in collaboration with the WTCCC or independently, the research teams are expected to analyse as many as 120 billion pieces of genetic data in the search for the genes underlying diseases such as multiple sclerosis, schizophrenia and asthma.

Researchers will examine between 500,000 and 1 million variants (SNPs) per sample as well as a comprehensive set of copy number variants (CNVs). Both SNPs and CNVs are responsible of the individual variation in our genomes.

"We have now entered a new era of large-scale genetics unthinkable even a few years ago," says Professor Peter Donnelly from the University of Oxford, who will chair the consortium. "Breakthroughs in our understanding of the human genome and rapid advances in sequencing technology mean that we are able to do very powerful analysis much faster and on a vastly bigger scale than ever before."

When the results of the WTCCC were announced in 2007, it was seen as a major breakthrough for medical science and was selected as one of the scientific highlights of the year by a number of the most prestigious scientific journals, including Nature and The Lancet. It identified a number of new genes and regions of the human genome which increase people’s susceptibility to or protect them from particular diseases.

Dr Mark Walport, Director of the Wellcome Trust, says: “It is now possible to unlock the genetics of common diseases. Although genetics tells only part of the story of disease, it can provide valuable and often unexpected insights that offer the promise of developing new treatments for these often very complex diseases.”

The research has been made possible by advances in progress in improved understanding of human genome variants, pioneered by the Wellcome Trust Sanger Institute at Hinxton, Cambridge. The Institute will devote a large part of its high-throughput genotyping pipeline headed by Dr Panos Deloukas to test many of the DNA samples. Most of the data analysis will be undertaken at the Wellcome Trust Centre for Human Genetics, University of Oxford.

“The Sanger Institute is bringing the power of its skills in genetic analysis to tackle common disease, to provide leadership, expertise and resources where they can make a difference," says Professor Leena Peltonen, who was appointed Head of Human Genetics at the Wellcome Trust Sanger Institute last year. "Our redefined strategy and joint expertise of human genetics faculty will ensure we deliver yet more ground-breaking results in clinically relevant areas."

Source: Wellcome Trust

Explore further: Analysis of horse pathogen sheds light on persistent infections

Related Stories

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Data bank launched for global access to ancient DNA

June 17, 2015

Medical and other researchers and science teachers around the world will be able to compare ancient DNA from humans from thousands of years ago with the genetics of modern day humans, thanks to a new world-first open access ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.