Green Gel: Hybrid material made from polymers and proteins fluoresces and respnods to pH value and temperature

Apr 18, 2008

Researchers at the University of California, Berkeley have now developed a new strategy for the formation of hybrid materials from synthetic polymers and proteins. They have thus been able to fuse the specific biological functions of proteins with the advantageous bulk and processing properties of plastics.

Polymer-protein hybrid materials may be of use in the manufacture of sensors, nanomachine parts, or drug-delivery systems. As Aaron P. Esser-Kahn and Matthew B. Francis report in the journal Angewandte Chemie, they have successfully synthesized a green-fluorescing biodegradable gel that responds to changes in pH value and temperature.

Previous processes for the production of hybrid materials depended on very specific coupling techniques that could not be used for some protein side-chains. In contrast, the new method developed by the Berkeley researchers is broadly applicable because in principle it is suitable for any protein.

The coupling occurs at both ends of the protein chain—and these are the same for all proteins: one amino acid group and one carboxylic acid group. Initially, two parallel but mutually independent (orthogonal) reactions are used to activate the two ends of the chain.

These are then attached to special chemical “anchor points” on the polymer. The proteins thus cross-link the individual polymer chains into a three-dimensional network, forming what is known as a hydrogel. A hydrogel is a solid, gelatinous mass consisting of water incorporated in a polymer network. A well-known example of a hydrogel is the soft contact lens.

Francis and Esser-Kahn chose to use a protein that fluoresces green to cross-link their polymer chains. Because the protein maintains its normal folding pattern even after attachment to the polymer, the fluorescence is also maintained: The entire gel fluoresces green.

This hybrid material has a special trait: the cross-linking of the polymer chains is achieved exclusively by means of the proteins. Because proteins can be attacked by proteases, enzymes that disintegrate proteins, these gels are biodegradable. The green fluorescence of the protein is pH-dependent. The gel correspondingly also reacts to changes in pH. It only fluoresces in the basic range; in a lightly acidic medium, the gel no longer fluoresces. Raising the temperature also elicits a response from the gel. The protein denatures at about 70 °C, which quenches the fluorescence and causes the gel to shrink.

Citation: Matthew B. Francis, Protein-Cross-Linked Polymeric Materials through Site-Selective Bioconjugation, Angewandte Chemie International Edition 2008, 47, No. 20, 3751–3754, doi: 10.1002/anie.200705564

Source: Angewandte Chemie

Explore further: 'Invisible' protein structure explains the power of enzymes

Related Stories

How oversized atoms could help shrink

Jul 01, 2015

"Lab-on-a-chip" devices – which can carry out several laboratory functions on a single, micro-sized chip – are the result of a quiet scientific revolution over the past few years. For example, they enable ...

A gel that can make drugs last longer

Jun 26, 2015

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR have developed a drug-delivering hydrogel to treat chronic diseases such as hepatitis C, a liver disease that kills around ...

'Pick and mix' smart materials for robotics

Jun 23, 2015

Researchers from the University of Cambridge have developed a simple 'recipe' for combining multiple materials with single functions into a single material with multiple functions: movement, recall of movement ...

Protein 'comet tails' propel cell recycling process

Jun 18, 2015

Several well-known neurodegenerative diseases, such as Lou Gehrig's (ALS), Parkinson's, Alzheimer's, and Huntington's disease, all result in part from a defect in autophagy - one way a cell removes and recycles ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.