Green Gel: Hybrid material made from polymers and proteins fluoresces and respnods to pH value and temperature

April 18, 2008

Researchers at the University of California, Berkeley have now developed a new strategy for the formation of hybrid materials from synthetic polymers and proteins. They have thus been able to fuse the specific biological functions of proteins with the advantageous bulk and processing properties of plastics.

Polymer-protein hybrid materials may be of use in the manufacture of sensors, nanomachine parts, or drug-delivery systems. As Aaron P. Esser-Kahn and Matthew B. Francis report in the journal Angewandte Chemie, they have successfully synthesized a green-fluorescing biodegradable gel that responds to changes in pH value and temperature.

Previous processes for the production of hybrid materials depended on very specific coupling techniques that could not be used for some protein side-chains. In contrast, the new method developed by the Berkeley researchers is broadly applicable because in principle it is suitable for any protein.

The coupling occurs at both ends of the protein chain—and these are the same for all proteins: one amino acid group and one carboxylic acid group. Initially, two parallel but mutually independent (orthogonal) reactions are used to activate the two ends of the chain.

These are then attached to special chemical “anchor points” on the polymer. The proteins thus cross-link the individual polymer chains into a three-dimensional network, forming what is known as a hydrogel. A hydrogel is a solid, gelatinous mass consisting of water incorporated in a polymer network. A well-known example of a hydrogel is the soft contact lens.

Francis and Esser-Kahn chose to use a protein that fluoresces green to cross-link their polymer chains. Because the protein maintains its normal folding pattern even after attachment to the polymer, the fluorescence is also maintained: The entire gel fluoresces green.

This hybrid material has a special trait: the cross-linking of the polymer chains is achieved exclusively by means of the proteins. Because proteins can be attacked by proteases, enzymes that disintegrate proteins, these gels are biodegradable. The green fluorescence of the protein is pH-dependent. The gel correspondingly also reacts to changes in pH. It only fluoresces in the basic range; in a lightly acidic medium, the gel no longer fluoresces. Raising the temperature also elicits a response from the gel. The protein denatures at about 70 °C, which quenches the fluorescence and causes the gel to shrink.

Citation: Matthew B. Francis, Protein-Cross-Linked Polymeric Materials through Site-Selective Bioconjugation, Angewandte Chemie International Edition 2008, 47, No. 20, 3751–3754, doi: 10.1002/anie.200705564

Source: Angewandte Chemie

Explore further: Probe enables tumor investigation using complementary imaging techniques

Related Stories

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

How to make chromosomes from DNA

July 28, 2015

Researchers at the University of Tokyo have discovered a long-overlooked process important for converting a long, string-like DNA molecule into a chromosome. This finding gives us a better understanding of the mechanism of ...

The mystery of the instant noodle chromosomes

July 23, 2015

A group of researchers from the Lomonosov Moscow State University tried to address one of the least understood issues in the modern molecular biology, namely, how do strands of DNA pack themselves into the cell nucleus. Scientists ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.