Researchers discover gene for branchio-oculo-facial syndrome

April 23, 2008

Boston, MA--In a collaborative effort, researchers from Boston University School of Medicine (BUSM) have discovered that deletions or mutations within the TFAP2A gene (Activating Enhancer-Binding Protein) result in the distinctive clefting disorder Branchio-Oculo-Facial syndrome (BOFS).

This rare disorder is characterized by specific skin anomalies involving the neck and behind the ear, eye abnormalities, a typical facial appearance, and frequently cleft lip and palate. The study currently appears on-line in the April 17th issue of the American Journal of Human Genetics.

Using the latest in molecular microarray technologies, the researchers examined one affected mother and son and two sporadic BOFS cases and found a small deletion on chromosome 6 in the mother and son. Sequencing of genes in this candidate region revealed missense mutations clustered in the basic region of the DNA-binding domain of the TFAP2A gene in 4 sporadic BOFS patients.

According to lead author Jeff Milunsky, MD, director of clinical genetics, associate director of the Center for Human Genetics, and an associate professor of pediatrics, genetics and genomics at BUSM, this discovery will lead to more precise diagnostic testing, enable prenatal diagnosis, suggest directions for new research, and facilitate genetic counseling in these families.

“This gene is a well-known transcription factor involved in multiple developmental pathways as well as tumorigenesis. An intriguing finding is that one of the affected patients with a mutation also has brain cancer, highlighting again the connection between malformations and cancer,” he added.
Milunsky believes this discovery may have significant wide-ranging implications as this gene may also play a role in the more common isolated occurrence of cleft lip and palate.

Source: Boston University

Explore further: Gene drive reversibility introduces new layer of biosafety

Related Stories

Gene drive reversibility introduces new layer of biosafety

November 16, 2015

In parallel with their development of the first synthetic gene drives - which greatly increase the chance a specific gene will be passed on to all offspring - George Church, Ph.D., and Kevin Esvelt, Ph.D., helped pioneer ...

Human gene prevents regeneration in zebrafish

November 18, 2015

Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body's own anti-cancer security ...

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.