Driving water droplets uphill

April 2, 2008

Lab-on-a-chip technology could soon simplify a host of applications, thanks to a new way to move droplets up vertical surfaces on flexible chips.

Canadian chemists have developed an all-terrain droplet actuation (ATDA) method to move droplets across chips at a wide range of angles. Aaron Wheeler and colleagues at the University of Toronto say digital microfluidic devices using ATDA could be used to move fluids rapidly between different environments, for example to cycle between heating and cooling, in research published in the Royal Society of Chemistry journal Lab on a Chip.

Wheeler developed ATDA on flexible, water-repellent polyimide surfaces, clad with copper, which can be bent into a variety of shapes including steps, twists and overhangs. The fluid beads are moved by sequentially activating a series of electrode pairs, which is thought to pull the droplet forward by reducing water repellence in front of the droplet. This process gives the team full control of the droplet, including up and down vertical surfaces.

Wheeler suggest several potential uses for the technique, including PCR (the polymerase chain reaction), which is used in DNA analysis. PCR depends on rapid temperature cycling - and Wheeler showed the method can be used to move fluids between a cooling structure and a hot plate. Automating the droplet movement would allow very rapid temperature cycling, Wheeler adds. The team also showed ATDA devices can be used to extract DNA from a complex organic mixture. By half-immersing the device in the mixture, and driving the water droplet in and out of it, the process could automate a tedious technique molecular biologists use to purify DNA, says Wheeler.

Richard Fair, who studies lab-on-a-chip devices at Duke University, Durham, US, says it is too soon to tell whether all-terrain devices will be useful. 'Demonstrating these applications is kind of cool, but whether ATDA is the best way to do them is another issue,' he says.

Wheeler agrees that the ultimate uses of ATDA are still to be established. 'What this will be good for, frankly we're not 100 per cent sure, but it's been fun to do something new,' he says. 'For example, this certainly isn't the only way to cycle temperature on a lab on a chip device. The point we're trying to make is that it's really easy - we can take this flexible substrate, and in a matter of minutes have a temperature gradient simply by sticking part of it on an external heater.'

Citation: Mohamed Abdelgawad, Sergio L. S. Freire, Hao Yang and Aaron R. Wheeler, Lab Chip, 2008, DOI: 10.1039/b801516c

Source: Royal Society of Chemistry

Related Stories

Recommended for you

Model shows how surge in wealth inequality may be reversed

July 30, 2015

(Phys.org)—For many Americans, the single biggest problem facing the country is the growing wealth inequality. Based on income tax data, wealth inequality in the US has steadily increased since the mid-1980s, with the top ...

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Unusual red arcs spotted on icy Saturn moon Tethys

July 30, 2015

Like graffiti sprayed by an unknown artist, unexplained arc-shaped, reddish streaks are visible on the surface of Saturn's icy moon Tethys in new, enhanced-color images from NASA's Cassini spacecraft.

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.