Harmful algae taking advantage of global warming

April 3, 2008

You know that green scum creeping across the surface of your local public water reservoir" Or maybe it’s choking out a favorite fishing spot or livestock watering hole. It’s probably cyanobacteria – blue-green algae – and, according to a paper in the April 4 issue of the journal Science, it relishes the weather extremes that accompany global warming.

Hans Paerl, a University of North Carolina at Chapel Hill Institute of Marine Sciences Professor and co-author of the Science paper, calls the algae the “cockroach of lakes.” It’s everywhere and it’s hard to exterminate – but when the sun comes up it doesn’t scurry to a corner, it’s still there, and it’s growing, as thick as 3 feet in some areas.

The algae has been linked to digestive, neurological and skin diseases and fatal liver disease in humans. It costs municipal water systems many millions of dollars to treat in the United States alone. And though it’s more prevalent in developing countries, it grows on key bodies of water across the world, including Lake Victoria in Africa, the Baltic Sea, Lake Erie and bays of the Great Lakes, Florida’s Lake Okeechobee and in the main reservoir for Raleigh, N.C.

“This is a worldwide problem,” said Paerl, Kenan Professor of marine and environmental sciences in UNC’s College of Arts and Sciences.

“It’s long been known that nutrient runoff contributes to cyanobacterial growth. Now scientists can factor in temperature and global warming,” said Paerl, who, with professor Jef Huisman from the University of Amsterdam, the Netherlands, explains the new realization in Science paper.

“As temperatures rise waters are more amenable to blooms,” Paerl said.

The algae also thrive in wet, soggy ground in areas experiencing periodic floods, like the U.S. Midwest. And in a drought, like the Southeastern United States is experiencing now, other algae and aquatic organisms die off, cyanobacteria thrive, waiting to explode

Warmer weather has also created longer growing seasons, and it’s enabled cyanobacteria to grow in northern waters previously too cold for their survival. Species first found in southern Europe in the 1930s now form blooms in northern Germany, and a Florida species now grows in the Southeastern U.S. Others have appeared recently places as far north as Montana and throughout Canada.

Fish and other aquatic animals and plants stand little chance against cyanobacteria. The algae crowds the surface water, shading out plants – fish food – below. The fish generally avoid cyanobacteria, so they’re left without food. And when the algae die they sink to the bottom where their decomposition can lead to extensive depletion of oxygen.

These cyanobacteria – blue-green algae – were the first plants on earth to produce oxygen.

“It’s ironic,” Paerl said. “Without cyanobacteria, we wouldn’t be here. Animal life needed the oxygen the algae produced.” Now, however, it threatens the health and livelihood of people who depend on infested waters for drinking water or income from fishing and recreational use.

These algae that were first on the scene, Paerl predicts, will be the last to go ... right after the cockroaches.

Source: University of North Carolina at Chapel Hill

Explore further: Toxic blue-green algae adapt to rising CO2

Related Stories

Toxic blue-green algae adapt to rising CO2

August 4, 2016

A common type of blue-green algae is finding it easy to adapt to Earth's rising CO2 levels, meaning blue-green algae – of which there are many toxin-producing varieties – are even more adept at handling changing climatic ...

Smart buoy for measuring water pollutants

September 8, 2016

All over the world, lakes, rivers, and coastal waters are threatened by high nutrient inputs. Nitrate or phosphates from waste-waters or fertilizers causes eutrophication. The consequence: Algae, in particular cyanobacteria ...

Cut phosphorus to reduce algae blooms, say scientists

August 18, 2016

Several prominent Canadian and American scientists are urging governments around the world to focus on controlling phosphorus to decrease the frequency and intensity of algal blooms in freshwaters. Their recommendation follows ...

Harmful algal blooms in their true colors

August 29, 2016

Explosive growth of cyanobacteria, also called blue-green algae, is nothing new. In fact, such cyanobacteria probably produced the original oxygen in Earth's atmosphere billions of years ago.

When the going gets tough, the tough get growing

July 28, 2016

While relentless bright light brings many forms of cyanobacteria to their knees - figuratively, of course - Synechococcus sp. PCC 7002 does the opposite, thriving and growing at a rate that far outpaces most of its peers. ...

Hidden green skills

September 16, 2016

What have plant scientists learned in the laboratory in the past three to five years that could be used to reduce inputs of water, chemical fertilizers and herbicides to agricultural fields?

Recommended for you

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 04, 2008
Blue greens float so they could be separated/concentrated in a anaerobic reactor to produce biogas- it just keeps striking me as an opportunity with the right research and business model

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.