'Superdense' coding gets denser

March 24, 2008

The record for the most amount of information sent by a single photon has been broken by researchers at the University of Illinois. Using the direction of “wiggling” and “twisting” of a pair of hyper-entangled photons, they have beaten a fundamental limit on the channel capacity for dense coding with linear optics.

“Dense coding is arguably the protocol that launched the field of quantum communication,” said Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering. “Today, however, more than a decade after its initial experimental realization, channel capacity has remained fundamentally limited as conceived for photons using conventional linear elements.”

In classical coding, a single photon will convey only one of two messages, or one bit of information. In dense coding, a single photon can convey one of four messages, or two bits of information.

“Dense coding is possible because the properties of photons can be linked to one another through a peculiar process called quantum entanglement,” Kwiat said. “This bizarre coupling can link two photons, even if they are located on opposite sides of the galaxy.”

Using linear elements, however, the standard protocol is fundamentally limited to convey only one of three messages, or 1.58 bits. The new experiment surpasses that threshold by employing pairs of photons entangled in more ways than one (hyper-entangled). As a result, additional information can be sent and correctly decoded to achieve the full power of dense coding.

Kwiat, graduate student Julio Barreiro and postdoctoral researcher Tzu-Chieh Wei (now at the University of Waterloo) describe their recent experiment in a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Through the process of spontaneous parametric down conversion in a pair of nonlinear crystals, the researchers first produce pairs of photons simultaneously entangled in polarization, or “wiggling” direction, and in orbital angular momentum, or “twisting” direction. They then encode a message in the polarization state by applying birefringent phase shifts with a pair of liquid crystals.

“While hyper-entanglement in spin and orbital angular momentum enables the transmission of two bits with a single photon,” Barreiro said, “atmospheric turbulence can cause some of the quantum states to easily decohere, thus limiting their likely communication application to satellite-to-satellite transmissions.”

ource: University of Illinois at Urbana-Champaign

Explore further: New information about bacterial enzymes to help scientists develop more effective antibiotics, cancer drugs

Related Stories

Dark matter and particle acceleration in near space

November 9, 2015

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to ...

Physicists break distance record for quantum teleportation

September 22, 2015

Researchers at the National Institute of Standards and Technology (NIST) have "teleported" or transferred quantum information carried in light particles over 100 kilometers (km) of optical fiber, four times farther than the ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

SLAC theorist explains quantum gravity

November 19, 2015

Our world is ruled by four fundamental forces: the gravitational pull of massive objects, the electromagnetic interaction between electric charges, the strong nuclear interaction holding atomic nuclei together and the weak ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Mar 25, 2008
Although this article has lots of interesting information, the implication that Shannon's limit has been beat or that a SINGLE photon can contain more information, is simply false. The quickest way to explain this is with a classical analogy of entangled photon communication: Entangled photons go two ways--which is, classically, a full duplex link. One can send one-way data twice as fast over a full duplex link because the back-channel can be used to send reverse error correction codes and thus no forward error correction need be coded into the forward channel.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.