Stem cells from hair follicles may help 'grow' new blood vessels

March 29, 2008

For a rich source of stem cells to be engineered into new blood vessels or skin tissue, clinicians may one day look no further than the hair on their patients’ heads, according to new research published earlier this month by University at Buffalo engineers.

“Engineering blood vessels for bypass surgery, promoting the formation of new blood vessels or regenerating new skin tissue using stem cells obtained from the most accessible source -- hair follicles -- is a real possibility,” said Stelios T. Andreadis, Ph.D., co-author of the paper in Cardiovascular Research and associate professor in the Department of Chemical and Biological Engineering in the UB School of Engineering and Applied Sciences.

Researchers from other institutions previously had shown that hair follicles contain stem cells.

In the current paper, the UB researchers demonstrate that stem cells isolated from sheep hair follicles contain the smooth muscle cells that grow new vasculature. The group recently produced data showing that stem cells from human hair follicles also differentiate into contractile smooth muscle cells.

“We have demonstrated that engineered blood vessels prepared with smooth muscle progenitor cells from hair follicles are capable of dilating and constricting, critical properties that make them ideal for engineering cardiovascular tissue regeneration,” said Andreadis.

In addition to growing new skin for burn victims, cells from hair follicles could potentially be used to engineer vascular grafts and possibly regenerate cardiac tissues for patients with heart problems.

Since smooth muscle cells comprise the muscle of numerous tissues and organs, including the bladder, abdominal cavity and gastrointestinal and respiratory tracts, this new, accessible source of cells may make possible future treatments that allow for the regeneration of these damaged organs as well.

Andreadis and his colleagues previously engineered functional and implantable blood vessels with smooth muscle and endothelial cells originating from bone-marrow mesenchymal stem cells.

A key advantage of mesenchymal cells is that they typically do not trigger an immune reaction when transplanted, he said.

“Preliminary experiments in our laboratory suggest an exciting possibility -- that stem cells from hair follicles may be similar to bone-marrow mesenchymal cells,” Andreadis said.

“The best case scenario is that from this one very accessible and highly proliferative source of stem cells, we will be able to obtain multiple different cell types that can be used for a broad range of applications in regenerative medicine,” he said.

Source: University at Buffalo

Explore further: The power of precision genomics to understand unique causes of disease in individual patients

Related Stories

Mapping the skin in time and space

October 4, 2016

The skin is the largest organ in mammals and it serves to protect the body from outside influences, such as physical damage, radiation, fluid loss or extreme temperatures. To fulfill this function, a plethora of cell types ...

Cells of origin for breast tumours identified

November 2, 2016

Breast cancer is the most common cancer type in women in Sweden and worldwide. It has long been known that not all breast cancers are similar: Luminal tumours consist mostly of cells that are similar to those found in the ...

Recommended for you

Swiss firm acquires Mars One private project

December 2, 2016

A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.

Bethlehem star may not be a star after all

December 2, 2016

It is the nature of astronomers and astrophysicists to look up at the stars with wonder, searching for answers to the still-unsolved mysteries of the universe. The Star of Bethlehem, and its origin, has been one of those ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.