Specialized natural killer cells in human tonsils pack a punch

March 12, 2008

Tonsils are a source of sore throats and an excuse for ice cream. But they also provide an important protective service, their immune-cell-rich tissue acting as the body’s first defense against the germs about to be swallowed or inhaled. Researchers have known that tonsils are packed with B cells, which flag invaders for other cells to attack. But a new study by Rockefeller University scientists shows that tonsils also house a different, very specialized cell that helps protect against the Epstein Barr virus (EBV).

EBV is a member of the herpes virus family and can cause a variety of ailments, from infectious mononucleosis to cancers such as Burkitt’s lymphoma. It acts by working its way into B cells and transforming them into virus-infected cells that continuously multiply. Some people manage to control the virus with no symptoms whatsoever, while others succumb. New research published in PLoS Pathogens may help explain why.

In comparison to peripheral blood, the tonsils contain just a small number of natural killer cells, immune cells named for their ability to recognize something as foreign and destroy it. But Christian Münz, head of the Laboratory of Viral Immunobiology, and Ph.D. student Till Strowig have found that the majority of the tonsils’ natural killer cells are a specific kind, called CD56bright cells, and incredibly potent — nearly a hundred times better at preventing EBV from transforming B cells than natural killer cells located in peripheral blood. “These cells are not only enriched in this organ, but they are better than at any other site,” Münz says.

In fact, the researchers found that the location of this protective subset of natural killer cells is quite precise, poised at a germ-entry site where they can control incoming pathogens. And surprisingly, the CD56bright cells have something in common with a totally different class of immune cells: Like T cells, they must be activated before they can do their job. This discovery paves the way for future EBV vaccine research, as prompting the activating cells could lead to a higher degree of viral resistance by the natural killer cells. Because there’s not yet a mouse model for the virus, Münz, Strowig and postdoc Cagan Gurer are now working to create mice with human immune system components, allowing the mice to be infected with EBV and allowing the researchers to watch what happens during the early stages of infection — stages during which humans have no symptoms, and have therefore never been studied.

“It might allow us, for the first time, to look at very early immune responses to Epstein Barr virus,” Münz says. “And it could hopefully be developed to test different vaccine formulations that might make the mice resistant against developing virus-induced tumors.” For developing nations, where Burkitt’s lymphoma is too costly to treat once it develops, a vaccine that efficiently controls Epstein Barr virus would be invaluable.

Citation: PLoS Pathogens 4(2):e27 (February 8, 2008)

Source: Rockefeller University

Explore further: Toxin from salmonid fish has potential to treat cancer

Related Stories

Toxin from salmonid fish has potential to treat cancer

July 24, 2015

Pathogenic bacteria develop killer machines that work very specifically and highly efficiently. Scientists from the University of Freiburg have solved the molecular mechanism of a fish toxin that could be used in the future ...

The $9 computer wants you. CHIP heats up on Kickstarter

May 12, 2015

Headlines about a computer's pricetag beyond consumer imaginations have been rolling in this week. They're calling it the Raspberry Pi killer. The crazy-cheap computer. The every-hacker's dream toy. By now you may have seen ...

Static killers?

September 6, 2013

Mammals contain cells whose primary function is to kill other cells in the body. The so-called Natural Killer (NK) cells are highly important in defending our bodies against viruses or even cancer. Scientists at the University ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.