Study rearranges some branches on animal tree of life

March 5, 2008

A study led by Brown University biologist Casey Dunn uses new genomics tools to answer old questions about animal evolution. The study is the most comprehensive animal phylogenomic research project to date, involving 40 million base pairs of new DNA data taken from 29 animal species.

The study, which appears in Nature, settles some long-standing debates about the relationships between major groups of animals and offers up a few surprises.

The big shocker: Comb jellyfish – common and extremely fragile jellies with well-developed tissues – appear to have diverged from other animals even before the lowly sponge, which has no tissue to speak of. This finding calls into question the very root of the animal tree of life, which traditionally placed sponges at the base.

“This finding suggests either that comb jellies evolved their complexity independently from other animals, or that sponges have become greatly simplified through the course of evolution. If corroborated by other types of evidence, this would significantly change the way we think about the earliest multicellular animals,” said Dunn, assistant professor of ecology and evolutionary biology at Brown. “Coming up with these surprises, and trying to better understand the relationships between living things, made this project so fascinating.”

Charles Darwin introduced the idea of a “tree of life” in his seminal book Origin of Species. A sketch of the tree was the book’s only illustration. Nearly 150 years after its publication, many relationships between animal groups are still unclear. While enormous strides have been made in genomics, offering up a species’ entire genome for comparison, there are millions of animal species on the planet. There simply isn’t the time to sequence all these genomes.

To get a better grasp of the tree of life – without sequencing the entire genomes of scores of species – Dunn and his team collected data, called expressed sequence tags, from the active genes of 29 poorly understood animals that perch on far-flung branches of the tree of life, including comb jellies, centipedes and mollusks. The scientists analyzed this data in combination with existing genomic data from 48 other animals, such as humans and fruit flies, looking for the most common genes being activated, or expressed.

The aim of this new approach is to analyze a large number of genes from a large number of animals – an improvement over comparative genomics methods which allow for a limited analysis of genes or animals. The new process is not only more comprehensive, it is also more computationally intensive. Dunn’s project demanded the power of more than 120 processors housed in computer clusters located in laboratories around the globe.

Dunn and his team:

-- unambiguously confirmed certain animal relationships, including the existence of a group that includes invertebrates that shed their skin, such as arthropods and nematodes;
-- convincingly resolved conflicting evidence surrounding other relationships, such as the close relationship of millipedes and centipedes to spiders rather than insects;
-- established new animal relationships, such as the close ties between nemerteans, or ribbon worms, and brachiopods, or two-shelled invertebrates.

“What is exciting is that this new information changes our basic understanding about the natural world – information found in basic biology books and natural history posters,” Dunn said. “While the picture of the tree of life is far from complete after this study, it is clearer. And these new results show that these new genomic approaches will be able to resolve at least some problems that have been previously intractable.”

Source: Brown University

Explore further: One year and counting: Mars isolation experiment begins

Related Stories

Is nature mostly a tinkerer or an inventor?

August 18, 2015

The Krüppel-like factor and specificity protein (KLF/SP) genes are found across many species, ranging from single cell organisms to humans. This gene family has been conserved during evolution, because it plays a vital role ...

Diversity provides stability among the animals in the wild

August 13, 2015

Why some species of plants and animals vary more in number than others is a central issue in ecology. Now researchers at Linnaeus University in Sweden and from the Helmholtz Centre for Environmental Research (UFZ) have found ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.