Firing photons makes advance in space communication

March 27, 2008

For the first time, physicists have been able to identify individual returning photons after firing and reflecting them off of a space satellite in orbit almost 1,500 kilometres above the earth. The experiment has proven the possibility of constructing a quantum channel between Space and Earth.

Research published on Friday, 28 March, in the New Journal of Physics, discusses the feasibility of building a completely secure channel for global communication, via satellites in space, all thanks to advances in quantum mechanics.

The research team, led by Paolo Villoresi and Cesare Barbieri from Padova University, Italy, has taken intricate steps to fire photons directly at the Japanese Ajisai Satellite. The researchers have been able to prove that the photons received back at the Matera ground-based station, in southern Italy, are the same as those originally emitted.

This news will be welcomed by communication companies, banks, and MI5-types worldwide as it paves the way for quantum-encrypted communication - the only form of communication that could ensure beyond any doubt that there are no eavesdroppers.

Until now, quantum-encrypted communication has only been proven possible at distances up to about 150 kilometres, either down optical fibres or via telescopes. When sent down optical fibres, photons are dissipated due to scattering and adsorption and, when using telescopes, photons are subject to interfering atmospheric conditions.

Anton Zeilinger, 2008 winner of the Institute of Physics’ premier award, the Newton Medal, was involved in the research. The team now believes that Space-to-Earth quantum communication is possible with available technology.

The scientists write, “We have achieved significant experimental results towards the realization of a quantum communication channel, as well as how to actually adapt an existing laser ranging facility for quantum communication.”

The team will now be furthering the research by making it possible to emit and receive quantum keys, uncrackable strings of 1s and 0s that enable quantum communication from an active sender in space. Very recently, the Italian Space Agency has funded the initial phase of this project.

The published version of the paper "Experimental verification of the feasibility of a quantum channel between Space and Earth" (2008 New J. Phys. 10 033038) will be available online from Friday 28 March at stacks.iop.org/NJP/10/033038 .

Source: Institute of Physics

Explore further: Time-symmetric formulation of quantum theory provides new understanding of causality and free choice

Related Stories

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Drawing a line between quantum and classical world

July 21, 2015

Quantum theory is one of the great achievements of 20th century science, yet physicists have struggled to find a clear boundary between our everyday world and what Albert Einstein called the "spooky" features of the quantum ...

Density-near-zero acoustical metamaterial made in China

July 14, 2015

When a sound wave hits an obstacle and is scattered, the signal may be lost or degraded. But what if you could guide the signal around that obstacle, as if the interfering barrier didn't even exist? Recently, researchers ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.