Researchers discover new way to control particle motion

March 17, 2008

Chemical engineers at The University of Texas at Austin have discovered a new way to control the motion of fluid particles through tiny channels, potentially aiding the development of micro- and nano-scale technologies such as drug delivery devices, chemical and biological sensors, and components for miniaturized biological "lab-on-a-chip" applications.

The researchers learned that particle motion is strongly linked to how the particles arrange themselves in a channel.

“Particle arrangements are determined by the interactions of the particles with their boundaries. Thus, we were able to use these interactions as a means for controlling how readily the fluid will self-mix, diffuse, and flow,” said Dr. Thomas Truskett, associate professor of chemical engineering at the university.

The research by Ph.D. students Gaurav Goel, William Krekelberg and Truskett at the university along with Dr. Jeffrey Errington of the State University of New York at Buffalo, appears in the March 21 issue of the journal Physical Review Letters.

Civic planners and schoolteachers have long appreciated that the motion of cars on highways or children through hallways proceeds smoothly if lanes of traffic are formed. Truskett's research team found that a similar principle applies for the motion of fluid particles in narrow channels. Specifically, their computer simulations reveal that fluid particles move past one another more easily if they first form "layers" aligned with the boundaries of the channels.

The team has also introduced a way to systematically determine which types of channel boundaries will promote or frustrate the formation of the layers necessary for faster particle transport.

If layering leads to faster particle dynamics, it is natural to ask why bulk fluids adopt a more disordered structure with no layering, said Truskett.

“The reason: thermodynamics determines the structure of a fluid, not dynamics - and thermodynamics favors a disordered state for bulk fluids because it lowers the system's free energy,” he said.

The Truskett team determined that confining a fluid to small length scales allowed them to tune the thermodynamically-favored state to coincide with one that has layering and fast particle dynamics.

Source: University of Texas at Austin

Explore further: Researchers use acoustic waves to move fluids at the nanoscale

Related Stories

Clarifying plasma oscillation by high-energy particles

November 29, 2016

The National Institute for Fusion Science has developed new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds. In the Japanese fusion reactor called the ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.