Researchers Demonstrate Molecular Delivery System for Molecular Communication

March 27, 2008

NTT DoCoMo, Inc. announced today that in experiments being carried out jointly with Professor Kazuo Sutoh of the Department of Life Sciences, The University of Tokyo, and Associate Professor Shoji Takeuchi of the Institute of Industrial Science, The University of Tokyo, it has successfully demonstrated the world's first molecular delivery system for molecular communication.

DoCoMo has been pioneering research into the field of molecular communication, a new communication paradigm in which molecules are used as a communication medium. By combining communication technology and biochemistry, DoCoMo aims to develop systems that could transmit information about the biochemical conditions of living organisms, such as excitement, emotion, stress or disease.

The experiment has confirmed the feasibility of a proposed delivery system to transport specific molecules using artificially synthesized DNAs and chemically energized motor proteins, typically found in muscles and nerve cells, which are capable of moving autonomously by converting chemical energy into mechanical work.

The system, which functions on its own because it does not require external power supply or control, could help lead to the realization of a biochemical analyzer, or biochip, a fingertip-sized microchip for biological and chemical analysis.

The envisioned molecular delivery system could have many applications in medicine and healthcare. For instance, it may be possible to diagnose diseases or stress by directly analyzing biomolecules in a drop of sweat or blood using a mobile phone equipped with a biochip. The molecular delivery system would be packaged in the biochip, and the data generated in the biochemical analysis would be transmitted to a medical specialist via a mobile phone using traditional wireless technology. The system could be used, for example, for remote health checks or preventive medicine.

A mobile phone with a biochip could also have applications in the fields of environment (e.g., water analysis) and entertainment (e.g., fortune telling).

DoCoMo and The University of Tokyo are continuing their collaborative research into practical uses of molecular communication to identify applicable molecules and to develop an actual molecular delivery system for installation in a biochip.

Source: NTT DoCoMo

Explore further: Nanomaterials and UV light can "trap" chemicals for easy removal from soil and water

Related Stories

A long-standing mystery in membrane traffic solved

March 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport system in cells for ...

A 'warhead' molecule to hunt down deadly bacteria

March 12, 2015

Targeting deadly, drug-resistant bacteria poses a serious challenge to researchers looking for antibiotics that can kill pathogens without causing collateral damage in human cells. A team of Boston College chemists details ...

Technology to help farmers protect crops

November 25, 2014

New technology to tackle biosecurity challenges down the track is one of the five megatrends identified in today's CSIRO report Australia's Biosecurity Future: preparing for future biological challenges.

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

Explaining crocodiles in Wyoming

September 2, 2015

Fifty million years ago, the Cowboy State was crawling with crocodiles. Fossil records show that crocs lounged in the shade of palm trees from southwestern Wyoming to southern Canada during the Cretaceous and Eocene.  Exactly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.