Meteorites Study: Mars, Earth, Moon Grew Up In Unique Planetary Nursery

March 20, 2008
Moon

A study of meteorites suggests that Mars, the Earth and the Moon share a common composition from ‘growing up’ in a unique planetary nursery in the inner solar system. The finding could lead to a rethink of how the inner solar system formed.

In the journal Nature the international team of scientists, which includes Professor Alex Halliday from Oxford University’s Department of Earth Sciences, report how they analysed 16 meteorites that fell to Earth from Mars. They found that the amounts of neodymium-142 these contain are subtly different from those of objects found in the asteroid belt. This isotopic fingerprint is proof that the chemistry of the inner solar system was different even for elements that are hard to vapourise.

Professor Halliday said: ‘The Earth, Moon and Mars appear to have formed in a part of the inner solar system with a ratio of samarium to neodymium that is around 5 per cent more than could be found in the asteroid belt. It is this ‘family resemblance’ that we see today when we compare oceanic basalts from Earth with Moon rocks and Martian meteorites. Such differences may be the result of the erosion of planetary crusts during formation events, alternatively, this composition arose from the sorting of clouds of partially melted droplets or grains - known as ‘chondrules’.’

Earth has a long geological history of recycling the materials that make up its crust and mantle, which could help explain why its composition is different from that of other planetary bodies – it could, for example, have deeply buried reservoirs of certain elements. However Mars and the Moon are believed to have been nothing like as active during their lifespan: making it much more difficult for any theory involving material recycling to explain why their composition should differ from other planetary bodies and yet have such similarities with the composition of the Earth.

Professor Halliday said: ‘What our results suggest is that the sorting of the elements that make up these planets may have happened at a much earlier stage than had been believed. It may even be that this sorting happened in the accretion disk out of which Mars and the early Earth first formed. What we can say is that the composition of these worlds is inconsistent with them simply forming out of large ‘lumps’ of stony meteorites, like those we see today in the asteroid belt.’

A report of the research, entitled ‘Super-chondritic Sm/Nd in Mars, Earth and the Moon’, is published in Nature on 20 March 2008. Co-author Alex Halliday is Professor of Geochemistry at Oxford University’s Department of Earth Sciences and Head of the MPLS Division. The international team included scientists from the Universite Denis Diderot, France, the ETH Zurich, Switzerland and the Ecole Normale Superieure de Lyon, France.

Source: Oxford University

Explore further: Using traces of ancient comet to explore the history of the Solar System

Related Stories

What is A dwarf planet?

August 18, 2015

The term dwarf planet has been tossed around a lot in recent years. As part of a three-way categorization of bodies orbiting the sun, the term was adopted in 2006 due to the discovery of objects beyond the orbit of Neptune ...

The dwarf planet Ceres

August 12, 2015

The asteroid belt is a pretty interesting place. In addition to containing between 2.8 and 3.2 quintillion metric tons of matter, the region is also home to many minor planets. The largest of these, known as Ceres, is not ...

Comet 67P, robot lab Philae's alien host, nears Sun

August 10, 2015

A comet streaking through space with a European robot lab riding piggyback will skirt the Sun this week, setting another landmark in an extraordinary quest to unravel the origins of life on Earth.

The planet Mercury

August 6, 2015

Mercury is the closest planet to our sun, the smallest of the eight planets, and one of the most extreme worlds in our solar systems. Named after the Roman messenger of the gods, the planet is one of a handful that can be ...

Recommended for you

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Comet Hitchhiker would take tour of small bodies

September 2, 2015

Catching a ride from one solar system body to another isn't easy. You have to figure out how to land your spacecraft safely and then get it on its way to the next destination. The landing part is especially tricky for asteroids ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

bobwinners
not rated yet Mar 20, 2008
It seems to me that the accretion disk which formed the all planets might have been sorted by gravity during the period of planetary formation. Is this what Halliday et al is proposing?
deepsand
3 / 5 (2) Mar 21, 2008
What Halliday suggests is that there was in fact some sorting of the elements in the acretion disk before the formation of certain planetary bodies, and that Mars, Earth & our moon where all born from the same portion of said disk subsequent to such sorting.

As for the mechanism that caused said sorting, he does not seem to be suggesting any particular one.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.