Novel mechanism found that may boost impaired function of leukemia protein

Mar 01, 2008

A new study led by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) reports on a novel mechanism that can enhance the function of a protein that is frequently impaired in patients with acute forms of leukemia. The protein, called AML1, plays a critical role in the development of the blood system and in the production of platelets and immune cells. The findings are published in the March 1, 2008, issue of Genes & Development.

According to the study, investigators identified the methyltransferase enzyme that controls the activity of the normal AML1 protein – also called RUNX1 – demonstrating its ability to regulate the function of transcription factors, proteins that control cell fate by turning genes on or off.

The researchers found that the cellular pathways that regulate the activity of the normal AML1 protein through a process called arginine methylation cannot similarly regulate the activity of AML1-ETO, a protein associated with causing acute leukemia.

Methylation is the process by which methyltransferases catalyze the attachment of a methyl group to DNA or protein in order to regulate gene expression or protein function. Demethylase enzymes that remove methyl groups from proteins have only recently been discovered.

“By manipulating the activity of these enzymes, it may be possible to promote the activity of the normal protein, and thereby lessen the impact of the protein that promotes leukemia,” said the study’s senior author Stephen D. Nimer, MD, Chief of the Hematology Service at MSKCC. “We are just beginning to explore whether we can tilt the balance toward a normally functioning AML1 protein in leukemic cells and either trigger their death or their reversion to normal behavior.”

There are currently no available drugs that target protein methylation, although two drugs that target DNA methylation are FDA approved for treating patients with myelodysplastic syndromes.

“We hope to utilize these new findings to help develop and ultimately test new treatment strategies for patients with either myeloid or lymphoid types of acute leukemia,” said the study’s first author, Xinyang Zhao, a member of Dr. Nimer’s laboratory.

Dr. Nimer has been researching the AML1-ETO protein at MSKCC since 1993. He and his colleagues first demonstrated in 1995 that AML1-ETO functions as a transcriptional repressor and dominantly inhibits AML1 function.

Source: Memorial Sloan-Kettering Cancer Center

Explore further: Genetic testing in kids is fraught with complications

Related Stories

Recommended for you

Genetic testing in kids is fraught with complications

Jul 02, 2015

A woman coping with the burden of familial breast cancer can't help but wonder if her young daughter will suffer the same fate. Has she inherited the same disease-causing mutation? Is it best to be prepared ...

Cause of acute liver failure in young children discovered

Jul 02, 2015

Acute liver failure is a rare yet life-threatening disease for young children. It often occurs extremely rapidly, for example, when a child has a fever. Yet in around 50 percent of cases it is unclear as to why this happens. ...

Genome sequencing illuminates rare Aicardi syndrome

Jul 02, 2015

As my inbox fills with ever more updates on the number of human genomes sequenced and the plummeting time and cost of next next next generation sequencing, I find myself hitting delete more and more often. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.