Key component of Earth's crust formed from moving molten rock

Mar 05, 2008
Key component of Earth's crust formed from moving molten rock
Layers of metamorphic rock, similar to granulite, in British Columbia. The coin is shown to provide scale. Credit: Gabriela Depine

Earth scientists are in the business of backing into history -- extrapolating what happened millions of years ago based on what they can observe now. Using this method, a team of Cornell researchers has created a mathematical computer model of the formation of granulite, a fine-grained metamorphic rock, in the Earth's crust.

By studying what were once pockets of hot, melted rock 13 kilometers (about 8 miles) deep in the Earth's crust 55 million years ago and calculating the period of cooling, the scientists were able to explain how granulite is formed as the molten rock migrates up through the crust.

The research is published in the March issue of the journal Nature by Gabriela V. Depine, a fourth-year graduate student in earth and atmospheric sciences (EAS); Christopher L. Andronicos, an EAS associate professor; and Jason Phipps-Morgan, professor of EAS. The research is funded by Cornell and by the National Science Foundation's Continental Dynamics program.

Granulite, composed mainly of feldspars, has no residual water and is called metamorphic because it is formed in temperatures of greater than 800 degrees Celsius (1,472 degrees Fahrenheit). It is a major component of the continental crust.

Working in British Columbia in summer 2006, the researchers puzzled over the formation of granulite, which, unlike other rocks, forms under a wide range of depths but under a narrow range of temperatures. In many places on Earth, temperature is assumed to vary linearly with depth -- that is, the deeper the crust, the hotter the rock.

The researchers decided to mathematically recreate the formation of granulite at various depths, to see if they could come up a method that mirrors the natural formation of the rock.

They did so by looking at plutons, or pockets of hot, melted rock that were once as much as 13 kilometers below the Earth's surface but are now exposed. (Plutons that rise to the surface and erupt can become volcanoes.) The researchers found that as melted rock deep in the Earth becomes buoyant and migrates up through the crust, granulite can form at various depths but at similar temperatures.

Looking at the melting process is like looking at the process of the formation of continents, Andronicos explained.

"If you look over geologic time, not all the rocks are the same age, and the reason for that is they got formed at different times," he said. "So if you can get a handle on the temperature, which is what controls melting and metamorphism, then you have a better idea of some of the fundamental controls that lead to rock formation, and therefore continents."

The computer model, he said, will hopefully provide further insight into the energy balance of the Earth during crustal formation.

Source: Cornell University

Explore further: Experiments open window on landscape formation

Related Stories

Recommended for you

Experiments open window on landscape formation

13 hours ago

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

NASA image: Canadian wildfires continue

13 hours ago

Canada is reeling from an early fire season this year as dozens of fires ravage at least three provinces of the country. All of the following reports are as of July 2, 2015.

The very hungry sea anemone

14 hours ago

The surprising culinary preferences of an abyssal sea anemone have been unveiled by a team of scientists from the National Oceanography Centre (NOC).

How Virginia is preparing for the next quake

18 hours ago

The 5.8 magnitude earthquake that struck the commonwealth in 2011 was a wake-up call for many Virginians. Originating deep under Louisa County, the quake was felt as far north as Canada and caused significant ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.