Researchers Create 'Invisibility Cloak' For Colloidal Nanoparticles

March 6, 2008

Carnegie Mellon University’s Michael Bockstaller and Krzysztof Matyjaszewski have created a version of Harry Potter’s famed “invisibility cloak” for nanoparticles.

Through a collaborative effort, researchers from the departments of Materials Science and Engineering and Chemistry have developed a new design paradigm that makes particles invisible.

In a recent edition of Advanced Materials Magazine, the researchers demonstrate that controlling the structure of nanoparticles can “shrink” their visible size by a factor of thousands without affecting a particle’s actual physical dimension.

“What we are doing is creating a novel technique to control the architecture of nanoparticles that will remedy many of the problems associated with the application of nanomaterials that are so essential to business sectors such as the aerospace and cosmetics industry,” said Bockstaller, an assistant professor of materials science and engineering.

Colloidal particles are omnipresent as additives in current material technologies in order to enhance strength and wear resistance and other attributes. Light scattering that is associated with the presence of particles often results in an undesirable whitish, or milky, appearance of nanoparticles, which presents a tremendous challenge to current material technologies. Carnegie Mellon researchers have successfully created a way to prevent this problem by grafting polymers onto the particles’ surface.

“Essentially, what we learned how to do was to control the density, composition and size of polymers attached to inorganic materials which in turn improves the optical transparency of polymer composites. In a sense, light can flow freely through the particle by putting ‘grease’ onto its surface,” said Matyjaszewski, the J.C. Warner University Professor of Natural Sciences in the Department of Chemistry.

The new “particle invisibility cloak” will help create a vast array of new material technologies that combine unknown property combinations such as strength and durability with optical transparency.

Source: Carnegie Mellon University

Explore further: It's alive, it's alive!

Related Stories

It's alive, it's alive!

July 30, 2015

On June 3, 2015, more than a month before New Horizons, flying faster than speeding bullet, reached its rendezvous with the Pluto system, an astronomer at the Southwest Research Institute who is also a space artist posted ...

Graphene supercurrents go ballistic

July 29, 2015

Researchers with Europe's Graphene Flagship have demonstrated superconducting electric currents in the two-dimensional material graphene that bounce between sheet edges without scattering. This first direct observation of ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.