Slow slip and slide dynamics

Mar 05, 2008

Kim Psencik, a Ph.D. student in the division of marine geology and geophysics at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, was recently awarded the prestigious MARGINS Student Prize for best paper/presentation at the American Geophysical Union (AGU) Fall 2007 Meeting.

The prize was in recognition of her presentation entitled "Current Status and Future Directives of the Nicoya Peninsula Continuous GPS Network, Costa Rica, In Regard to Slip Style and Distribution." Her research is in collaboration with advisor Dr. Tim Dixon (UM Rosenstiel School), Susan Schwartz (University of California - Santa Cruz), and Marino Protti and Victor Gonzales (National University of Costa Rica), on processes occurring in the Cocos-Caribbean Subduction zone on the west coast of Costa Rica.

Using high precision GPS (Global Positioning System) equipment, as well as seismometers, Psencik and the team were able to study and assess Earth dynamics occurring in the Nicoya Peninsula on Costa Rica’s Pacific Coast. The scientists initially intended to assess changes in the locking patterns of the fault and better understand the physics of earthquakes and energy release.

But while they were there, they captured what is referred to as a “Slow Slip Event”, in which the same amount of energy is released as in a standard earthquake, but is distributed over a several weeks rather than several seconds. The slow release of energy spares damage to the surface environment, and the lack of significant seismic waves causes the quakes to go unnoticed by humans.

“This is a prime location for the use of GPS to study plate boundary processes like earthquakes, tsunamis, locking zone dynamics and episodic tremors because the peninsula is so close to the subduction zone trench,” said Psencik. “Using our state of the art network of GPS and seismic systems and 10 seismic stations we were able to compile a good record that will help us to better understand the earthquake process.”

The team plans to create computer models of both the transient motion on the fault plane, as well as the locking patterns before and after the events in an effort to determine if the occurrence of a slow slip event has any impact on the nature and distribution of future earthquakes.

Born and raised in Rochester N.Y., she attended Honeoye Falls-Lima High School. Psencik received her bachelor’s in marine science and geology from the University of Miami in May 2005. She is currently entering her fourth year as a Ph.D. student at the Rosenstiel School.

Source: University of Miami

Explore further: Team reveals the first 'images' of thunder

Related Stories

FAA's Airworthiness Directive issued to avoid power loss

19 hours ago

A fix for a software problem that could possibly result in power loss in Boeing 787s has been ordered. Federal Aviation Administration officials adopted a new airworthiness directive (AD), effective as of ...

More than 2,200 confirmed dead in Nepal earthquake

Apr 26, 2015

A powerful aftershock shook Nepal on Sunday, making buildings sway and sending panicked Kathmandu residents running into the streets a day after a massive earthquake left more than 2,200 people dead.

Recommended for you

Team reveals the first 'images' of thunder

17 hours ago

For the first time, scientists have imaged thunder, visually capturing the sound waves created by artificially triggered lightning. Researchers from Southwest Research Institute (SwRI) are presenting the ...

Yap Island typhoon warning in place for Noul

17 hours ago

Tropical Storm Noul is still threatening Yap Island located in the Caroline Islands of the western Pacific Ocean, and a part of the Federated States of Micronesia. Micronesia has posted a typhoon warning ...

NASA IMERG sees Australia's bicoastal rainfall

18 hours ago

The rainfall accumulation analysis above was computed from data generated by the Integrated Multi-satellite Retrievals for GPM (IMERG) during the period from April 28 to May 3, 2015. During this period IMERG ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.