New discovery at Jupiter could help protect Earth-orbit satellites

March 9, 2008

Radio waves accelerate electrons within Jupiter’s magnetic field in the same way as they do on Earth, according to new research published in Nature Physics this week. The discovery overturns a theory that has held sway for more than a generation and has important implications for protecting Earth-orbiting satellites.

Using data collected at Jupiter by the Galileo spacecraft, Dr Richard Horne of British Antarctic Survey (BAS) and colleagues from the University of California, Los Angeles, and the University of Iowa found that a special type of very low frequency radio wave is strong enough to accelerate electrons up to very high energies inside Jupiter’s magnetic field.

According to lead author, Dr Richard Horne,

“We’ve shown before that very low frequency radio waves can accelerate electrons in the Earth’s magnetic field, but we have now shown that exactly the same theory works on Jupiter, where the magnetic field is 20,000 times stronger than the Earth’s and the composition of the atmosphere is very different. This is the ultimate test of our theory.”

“On Jupiter, the waves are powered by energy from volcanoes on the moon Io, combined with the planet’s rapid rotation – once every 10 hours. Volcanic gasses are ionized and flung out away from the planet by centrifugal force. This material is replaced by an inward flow of particles that excite the waves that in turn accelerate the electrons.”

Understanding how electrons are accelerated will help scientists make better predictions of when satellites are at risk of damage by high-energy charged particles. These particles encircle the Earth in the Van Allen radiation belts and can damage satellites by causing malfunctions and degrading electronic components. However, the number of particles in the radiation belts can change dramatically within a few minutes, which is why more accurate forecasting is needed.

The discovery also has other scientific implications for Jupiter – it overturns a theory that has held sway for more than 30 years. According to Dr Horne,

“For more than 30 years it was thought that the electrons are accelerated as a result of transport towards Jupiter, but now we show that gyro-resonant wave acceleration is a very important step that acts in concert. Once the electrons are accelerated, they are transported closer to the planet and emit intense synchrotron radiation out into interplanetary space. Our theory provides the missing step to explain this high intensity radiation from Jupiter, which was first detected on Earth more than 50 years ago.”

Source: British Antarctic Survey

Explore further: Protecting Juno's heart

Related Stories

Protecting Juno's heart

November 5, 2015

Each new probe we launch into space follows a finely-tuned, predetermined trajectory that opens up a new avenue of understanding into our solar system and our universe. The results from each probe shapes the objectives of ...

Shining a light on the aurora of Mars

November 5, 2015

ESA's Mars Express has shed new light on the Red Planet's rare ultraviolet aurora by combining for the first time remote observations with in situ measurements of electrons hitting the atmosphere.

Jupiter's moon Ganymede

October 16, 2015

In 1610, Galileo Galilei looked up at the night sky through a telescope of his own design. Spotting Jupiter, he noted the presence of several "luminous objects" surrounding it, which he initially took for stars. In time, ...

Saturn's moon Rhea

October 26, 2015

The Cronian system (i.e. Saturn and its system of rings and moons) is breathtaking to behold and intriguing to study. Besides its vast and beautiful ring system, it also has the second-most satellites of any planet in the ...

Chandra probes high-voltage auroras on Jupiter

March 2, 2005

Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (1) Mar 10, 2008
I would like to better understand how the radio waves accelerate the electrons.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.