New detector can 'see' single neutrons over broad range

March 10, 2008
New NIST Detector Can 'See' Single Neutrons Over Broad Range
Neutron absorption by 3He yields tens of Lyman alpha photons, which result from the most fundamental energy jump in the hydrogen atom. This schematic illustrates the operation of a prototype Lyman alpha neutron detector. Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a new optical method that can detect individual neutrons and record them over a range of intensities at least a hundred times greater than existing detectors.

The new detector, described at the March Meeting of the American Physical Society by Charles Clark, a Fellow of the Joint Quantum Institute of NIST and the University of Maryland, promises to improve existing neutron measurements and enable tests of new phenomena beyond the Standard Model, the basic framework of particle physics.

The prototype laboratory device is based on a process first observed by the research team: the emission of light from hydrogen atoms produced when neutrons are absorbed by helium-3 atoms (3He). Lyman alpha light, discovered by Harvard physicist Theodore Lyman in 1906, results from the jump between the two lowest-energy states of the hydrogen atom.

Although it is the brightest light emitted by the sun and is one of the most abundant forms of light in the universe, Lyman alpha is invisible to the eye because it lies in the far ultraviolet region of the optical spectrum. It is strongly absorbed by most substances and can travel through only about a millimeter of air.

Helium gas, however, does not absorb Lyman alpha light. When a neutron is absorbed by a helium-3 atom, one atom of hydrogen and one atom of tritium (a heavy form of hydrogen) are produced. These atoms fly apart at high speeds, can be excited by collisions with surrounding helium gas, and subsequently emit Lyman alpha light. This light is recorded by the new device, known as the Lyman alpha neutron detector (LAND).

Using an ultracold neutron beam at the NIST Center for Neutron Research, the research team has discovered that Lyman alpha light is generated with surprisingly high efficiency: about 40 photons are generated per neutron for helium gas at atmospheric pressure. According to Alan Thompson, neutron expert on the team, “This device thus has the potential to detect both single neutrons and large numbers of neutrons, which is very difficult to do with present neutron detectors based on electrical discharges.”

The use of an optical means of detection, rather than an electronic one, also offers the prospect of at least a hundredfold improvement in neutron detectors’ dynamic range (the spread in recordable neutron intensity from faint to bright). This stems from the fact that optical detectors respond more quickly than electronic detectors (which suffer from longer periods of inactivity known as “dead time.”)

With further development, this new method can potentially lead to better measurements at existing neutron facilities (for example, neutron diffraction instruments at the NIST Center for Neutron Research) and enable new tests of physics beyond the Standard Model. Measurements at NIST of a property in neutrons known as the electric dipole moment and more precise measurements of the neutron lifetime are planned.

Source: National Institute of Standards and Technology

Explore further: White dwarfs crashing into neutron stars explain loneliest supernovae

Related Stories

Hubble observes calcium-rich supernovae

March 2, 2016

The NASA/ESA Hubble Space Telescope offers a multitude of spectacular images of celestial objects and a huge amount of scientific data helpful for astronomers. A team of scientists from UK and Sweden has recently made use ...

Prospecting for Lunar Water

April 29, 2005

by Patrick L. Barry The next time you look at the Moon, pause for a moment and let this thought sink in: People have actually walked on the Moon, and right now the wheels are in motion to send people there again. The goals ...

Lunar Reconnaissance Orbiter's first moon images available

July 2, 2009

( -- NASA's Lunar Reconnaissance Orbiter has transmitted its first images since reaching the moon on June 23. The spacecraft's two cameras, collectively known as the Lunar Reconnaissance Orbiter Camera, or LROC, ...

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.