3-D Imaging -- First Insights Into Magnetic Fields

March 30, 2008
Magnetic Fields Around a Dipol
The magnetic field of a dipol magnet visualized by spinpolarized neutrons. Credit: Hahn-Meitner-Institut Berlin

3-D images are not only useful in medicine; the observation of internal structures is also invaluable in many other fields of scientific investigation. Recently, researchers from the Hahn-Meitner-Institute (HMI) in Berlin in cooperation with University of Applied Sciences have succeeded, for the first time, in a direct, three-dimensional visualisation of magnetic fields inside solid, non-transparent materials. This is announced by Nikolay Kardjilov and colleagues in the current issue of the journal Nature Physics.

The researchers in the imaging group used neutrons, subatomic particles that have zero net charge, but do have a magnetic moment, making them ideal for investigating magnetic phenomena in magnetic materials. When in an external magnetic field, the neutrons behave like compass needles, all aligning to point on the direction of the field.

Neutrons also have an internal angular momentum, often referred to by physicists as spin, a property that causes the needle to rotate around the magnetic field, similar to the way in which the Earth rotates on its axis. When all of the magnetic moments point in the same direction then the neutrons are said to be spin-polarised. If a magnetic sample is irradiated with such neutrons, the magnetic moments of the neutrons will begin to rotate around the magnetic fields they encounter in the sample and the direction of their spin changes.

Kardjilov's group used this phenomenon as a measurement parameter for tomography experiments using two spin polarisers (which only allow the passage of neutrons whose spin points in a specific direction) to polarise and then analyse the neutrons. By detecting changes in the spins, it is possible to “see” the magnetic fields within the sample.

Kardjilov explains this by comparison with a medical CT scan; when a specimen is irradiated with x rays the density of the materials present alters the intensity of the light. "It's the same with our magnetic specimen, which changes the spin rotation of the neutrons", says Nikolay Kardjilov. "The equipment only allows passage of neutrons with a specific spin rotation, and this generates the contrast according to how the magnetic properties are distributed within the specimen. By rotating the specimen we can reconstruct a three-dimensional image."

Since 2005, Nikolay Kardjilov has built up the neutron tomography section at HMI and now his group is the first to use spin rotation as a measurement signal for three-dimensional imaging. Normally, neutron imaging relies on the different levels of absorption of radiation by different materials to produce contrast. The measurement of magnetic signals is a novel concept and its success lies partly in the polarisers and analysers, and the detector system, which have been developed and built by the HMI researchers.

Magnetism is one of the central research fields at HMI. To understand high temperature superconductivity, for example, it is vital to understand how magnetic flux lines are distributed and how these flux lines can be established in the material. With Kardjilov's experimental setup, it is now possible, among other things, to visualise magnetic domains in magnetic crystals three-dimensionally.

Source: Helmholtz Association of German Research Centres

Explore further: Explainer: What is a neutron star?

Related Stories

Explainer: What is a neutron star?

September 1, 2015

Neutron stars are arguably the most exotic objects in the universe. Like one of those annoying friends who seemingly must overachieve in every aspect of life, neutron stars exceed in almost every category: surface gravity; ...

Unusual magnetic behavior observed at a material interface

August 18, 2015

An exotic kind of magnetic behavior, driven by the mere proximity of two materials, has been analyzed by a team of researchers at MIT and elsewhere using a technique called spin-polarized neutron reflectometry. They say the ...

Two spin liquids square off in an iron-based superconductor

August 5, 2015

Despite a quarter-century of research since the discovery of the first high-temperature superconductors, scientists still don't have a clear picture of how these materials are able to conduct electricity with no energy loss. ...

Pulsar punches hole in stellar disk

July 22, 2015

A fast-moving pulsar appears to have punched a hole in a disk of gas around its companion star and launched a fragment of the disk outward at a speed of about 4 million miles per hour. NASA's Chandra X-ray Observatory is ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Probing the limits of wind power generation

September 2, 2015

(Phys.org)—Wind turbine farms now account for an estimated 3.3 percent of electricity generation in the United States, and 2.9 percent of electricity generated globally. The wind turbine industry is growing along all vectors, ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
5 / 5 (2) Mar 30, 2008
A wonderful addition to the study of living cells! Interaction of electron spins with neutron spins will help explain inteligence transfer, and energy routing!
earls
3 / 5 (2) Mar 30, 2008
That doesn't sound like very "neutral" behavior to me.
Ralph
4 / 5 (1) Mar 31, 2008
This little article is outstandingly well written. It is clear, concise and amazingly informative. Few general-audience science pieces meet this level of clarity and readability. I learned a lot about neutrons and about the new imaging technique by reading it. Kudos to the author!
HeRoze
4 / 5 (2) Mar 31, 2008
Cool- spin rotation technology is the fundamental response used in MRI imaging. MRI uses hydrogen spin alignments, but all else is similar. Good stuff.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.