Basis created for directing and filming blood vessels

Mar 26, 2008

A new method of filming blood-vessel cells that move in accordance with targeted signals has been developed by researchers at Uppsala University in collaboration with researchers at the University of California. The method can also be used to study how migration of cancer cells and nerves can be controlled. These interesting findings have now been published in the Journal of Biological Chemistry.

Formation of new blood cells and lymph vessels takes place with a number of different diseases. Formation of new cells is sometimes desirable, e.g. in the event of wound healing, when new tissue must be formed. Undesirable vessel formation takes place in the event of tumour growth. The tumour receives nutrition from the new blood vessels and can also spread via newly formed lymph vessels, thus prevention of vessel growth is desirable in this situation.

A major challenge in the field of medicine is understanding the signals governing the way vessels are formed. It has been proposed that targeted signals – so-called gradients – from growth factors instruct the vessels as to the direction in which they are to grow.

"Our study shows that a simple gradient from a signal protein is sufficient to tell the blood vessel cell in which direction it is to move. We have also been able to show that the form of the gradient governs the way in which the cell moves," says Irmeli Barkefors, a postgraduate student at Uppsala University.

The research group is now going to develop the method further. The aim is to be able to study targeted migration in complicated organ culture systems, whereby interaction between different cell types can be studied.

"The method can basically be adapted to facilitate study of all types of cells. It is particularly important to study the mechanisms that determine whether or not cancer cells spread," says researchers Johan Kreuger, who has been heading the project.

Source: Uppsala University

Explore further: Self-propelling particles mimic organisms' upstream moves

Related Stories

The trillion-frame-per-second camera

Apr 29, 2015

When a crystal lattice is excited by a laser pulse, waves of jostling atoms can travel through the material at close to one sixth the speed of light, or approximately 28,000 miles/second. Scientists now have ...

Vascular cells can fuse with themselves

Apr 20, 2015

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. ...

Recommended for you

Video: Why are avocados so awesome?

8 hours ago

Whether they're in a big bowl of guacamole for your Cinco de Mayo festivities or scooped on top of your salad, avocados enjoy a special place in our hearts and stomachs. On top of being tasty, avocados are ...

Study describes revolutionary method of making RNAs

8 hours ago

A biochemist from The University of Texas Health Science Center at San Antonio is a co-author on a paper in Nature that describes a new, more efficient method of making ribonucleic acids (RNAs).

For batteries, one material does it all

14 hours ago

Engineers at the University of Maryland have created a battery that is made entirely out of one material, which can both move electricity and store it.

Wood-polymer composite furniture with low flammability

15 hours ago

Wood is a popular material in interior design, but its water absorbency limits its use in bathrooms, where natural wood easily becomes discolored or moldy. Fraunhofer scientists and partners have developed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.