Web will work wonders for the faint hearted

February 14, 2008
Web will work wonders for the faint hearted
PhD student David Keeling with the web material that will be used in the development of the heart assist device. Credit: Simon & Simon Photography

A new device could put the beat back into weak hearts - and free patients from a lifetime of anti-rejection drugs.

Current implanted heart assist devices function by sucking blood from the ventricles and then expelling it into downstream vessels. Whilst these have been successful in prolonging the lives of heart patients, they come into contact with the blood stream and hence require life-long drug therapy to suppress the immune system and prevent blood clotting. In addition, many of these devices use high speed turbines to produce the pumping force, and this has been proven to cause damage to cells within the blood increasing the chance of clots forming.

The ingenious device being developed by engineers at the University of Leeds provides a less invasive alternative. The team has developed a specially-woven web made from biocompatible material which will not be rejected by the body.

The webbing wraps around the heart and therefore does not come into contact with the blood stream. Inbuilt sensors recognise when the heart wants to beat and trigger a series of miniature motors which cause the web to contract – increasing the internal pressure and assisting the heart to pump the blood around the body.

The team consists of Drs Peter Walker (who devised the original concept) and Martin Levesley from the University’s School of Mechanical Engineering, cardiac consultants Kevin Watterson and Osama Jaber from Leeds General Infirmary and engineering PhD student David Keeling. The research has been funded by Leeds-based medical charity Heart Research UK.

“It’s a really simple concept that works in the same way as when you squeeze a plastic bottle, forcing the liquid inside to rise,” says PhD student David Keeling who has built a special rig to test the device.

The device is currently at prototype stage with team using a computer simulated model of the human blood flow circuit coupled to David’s mechanical rig. The rig replicates the motion of the heart within the simulation under different conditions, and allows the team to test their web device. The group is currently testing their latest prototype, aiming to refine design and assist strategies. Says David: “We’ve been looking at finding the optimum timing to trigger and also length of the compressive squeeze.”

Once the mechanics have been perfected, the team intends to simulate the effects of different heart diseases to gauge the potential success of the device.

Potential uses for the device are huge. As well as offering support to people suffering from heart and valve problems, the device could also be a bridging aid to patients as they wait for transplants, providing them with a better quality of life. Says David: “Recent research has found that with some heart diseases, supporting the heart for a short period with an assistive device reduces the work-load on the heart and allows it to rest and recover. Our device also allows for a controlled relaxation of the heart muscle after contraction, which means that it’s being supported throughout the whole heartbeat process. It’s the same as when you pull a muscle in any other part of your body, rest can often be the best therapy.”

Source: University of Leeds

Explore further: A Wi-Fi reflector chip to speed up wearables

Related Stories

A Wi-Fi reflector chip to speed up wearables

July 23, 2015

Whether you're tracking your steps, monitoring your health or sending photos from a smart watch, you want the battery life of your wearable device to last as long as possible. If the power necessary to transmit and receive ...

Is city biking hazardous to your health?

June 18, 2015

People used to say that exercising in New York City was like smoking a pack of cigarettes. Luckily, conditions have vastly improved, according to a recent NYC Health Department report, but some areas of the city continue ...

Fitness trackers are hot, but do they really help?

June 18, 2015

Sales of fitness trackers are climbing, and the biggest maker of the gadgets, Fitbit, made a splashy debut on the stock market Thursday. But will the devices really help you get healthier?

Heartbeat on a chip could improve pharmaceutical tests

June 17, 2015

A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms, according to the ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.