Stress hormone impacts memory, learning in diabetic rodents

February 17, 2008

Diabetes is known to impair the cognitive health of people, but now scientists have identified one potential mechanism underlying these learning and memory problems. A new National Institutes of Health (NIH) study in diabetic rodents finds that increased levels of a stress hormone produced by the adrenal gland disrupt the healthy functioning of the hippocampus, the region of the brain responsible for learning and short-term memory. Moreover, when levels of the adrenal glucocorticoid hormone corticosterone (also known as cortisol in humans) are returned to normal, the hippocampus recovers its ability to build new cells and regains the “plasticity” needed to compensate for injury and disease and adjust to change.

The study appears in the Feb. 17, 2008, issue of Nature Neuroscience and was conducted by the National Institute on Aging (NIA), part of the NIH. NIA’s Mark Mattson, Ph.D., and colleagues in the Institute’s Intramural Research Program performed the study with Alexis M. Stranahan, a graduate student at Princeton University in New Jersey.

“This research in animal models is intriguing, suggesting the possibility of novel approaches in preventing and treating cognitive impairment by maintaining normal levels of glucocorticoid,” said Richard J. Hodes, M.D., NIA director. “Further study will provide a better understanding of the often complex interplay between the nervous system, hormones and cognitive health.”

Cortisol production is controlled by the hypothalamic-pituitary axis (HPA), a hormone-producing system involving the hypothalamus and pituitary gland in the brain and the adrenal gland located near the kidney. People with poorly controlled diabetes often have an overactive HPA axis and excessive cortisol produced by the adrenal gland. To study the interaction between elevated stress hormones and the hippocampal function, researchers tested the cognitive abilities and examined the brain tissue in animal models of rats with Type 1 diabetes (insulin deficient) and mice with Type 2 diabetes (insulin resistant).

Researchers found that diabetic animals in both models exhibited learning and memory deficits when cortisol levels were elevated due to impaired plasticity and declines in new cell growth. Returning the levels to normal, however, reversed the negative impact on the hippocampus and restored learning and memory.

“This advance in our understanding of the physiological changes caused by excessive production of cortisol may eventually play a role in preventing and treating cognitive decline in diabetes,” said Mattson, who heads the NIA’s Laboratory of Neurosciences. He and Stranahan explained these findings may also help explain the connection between stress-related mood disorders and diabetes found in human population studies.

Source: National Institute on Aging

Explore further: For prairie voles, later socialization can beat childhood neglect

Related Stories

Gravity, who needs it? NASA studies your body in space

November 18, 2015

What happens to your body in space? NASA's Human Research Program has been unfolding answers for over a decade. Space is a dangerous, unfriendly place. Isolated from family and friends, exposed to radiation that could increase ...

Information is contagious among social connections

November 16, 2015

New research using advanced computer modeling sheds light on how behaviors may become "contagious" in large groups, showing that the memory of one individual can indirectly influence that of another via shared social connections. ...

Gift Guide: Kiddie tech beyond video games, tablets

November 19, 2015

What to get a tech-savvy kid who's tired of the same old tablets and video games? New toys this year range from easy-to-use sets for building circuits to a talking dinosaur powered by IBM's Watson artificial-intelligence ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.