Small 'helper' stars needed for massive star formation

Feb 28, 2008

In order for a rare, massive star to form inside an interstellar cloud of gas and dust, small "helper" stars about the size of the sun must first set the stage, according to a new theory proposed by astrophysicists at the University of California, Berkeley, and Princeton University.

Massive stars between 10 and 150 times the mass of the sun are few in number but produce the bulk of the heavy elements in a galaxy when they explode in supernovas. Their extreme brightness makes them signposts of star formation in distant galaxies.

Astrophysicist Christopher F. McKee, professor of physics and astronomy at UC Berkeley, and Mark R. Krumholz, a Hubble postdoctoral fellow in the Department of Astrophysical Sciences at Princeton, have been modeling the formation of these stars for nearly 10 years. Recently, they looked at the conditions inside cold clouds of molecular hydrogen that favor formation of massive stars over low-mass stars like the sun.

In a report this week in Nature, Krumholz and McKee argue that early formation of a few low-mass stars in a cloud paves the way for later formation of a stellar big brother instead of fragmentation of the cloud into a hundred smaller clouds, which would produce only low-mass siblings.

"It's only the formation of these low-mass stars that heats up the cloud enough to cut off the fragmentation," McKee said. "It is as if the cold molecular cloud starts on the process of making low-mass stars but then, because of heating, that fragmentation is stopped and the rest of the gas goes into one large star."

"What it comes down to is that if a cloud is cold, it tends to break up into many small pieces that become low-mass stars," added Krumholz, who recently accepted a faculty position with the astronomy department at UC Santa Cruz. "As the cloud gets warmer, though, it can make bigger and bigger objects."

The cloud temperatures are still cold, however. A typical interstellar hydrogen cloud is 10-20 degrees Celsius above absolute zero (10-20 Kelvin, or about -430 degrees Fahrenheit), while low-mass stars can heat the cloud to double or triple this temperature. To stop the entire cloud from collapsing, the temperature would have to increase to many hundreds of degrees above absolute zero, McKee said.

According to Krumholz, each small star within a hydrogen cloud has a zone of influence where it warms up the gas and prevents it from collapsing into small fragments. In low density clouds, each zone of influence is small and contains very little mass, so this effect is unimportant.

As the density increases, however, the gas and small stars get packed closer and closer together. Eventually, said Krumholz, the zones of influence of the few low-mass stars encompass the entire cloud, preventing the cloud from fragmenting and forcing it to collapse to make a massive star.

McKee noted that this collapse occurs within an even larger interstellar cloud that may contain more than a million times the mass of the sun. Therefore, as in our galaxy's Orion Nebula, many massive stars may be forming simultaneously inside a giant molecular cloud.

The density above which massive stars can form is about a million hydrogen molecules per cubic centimeter, which is a very extreme vacuum on Earth, he said, but nevertheless dense enough to collapse into a massive star over hundreds of thousands of years. The particle density in Earth's atmosphere is 10 trillion times greater.

According to McKee, one implication of the density limitation is that in the outer reaches of galaxies, where the density may not reach this threshold in a sufficiently large region of space, low-mass stars may be forming in the absence of any massive stars. Because we can see only the big, bright stars from Earth, he said, astronomers may be underestimating the amount of star formation going on in distant galaxies.

"In fact, there may be many stars forming in the outer reaches of distant galaxies, just not the bright ones we can see," McKee said. "Star formation could be occurring that is essentially invisible."

He noted that a recent satellite collecting ultraviolet light from distant galaxies has seen evidence of star formation in the very outer regions of galaxies, and that this may confirm their prediction.

McKee and Krumholz are involved in large-scale computer simulations of star formation inside cold molecular clouds to confirm the researchers' mathematical theory that low-mass star formation is necessary for formation of high-mass stars.

This video simulates the collapse of a 100 solar mass protostellar core to a massive star. On the left is the entire molecular cloud about 1.3 light years on a side. On the right is a portion of that cloud magnified 40 times to focus on the formation of a single massive star. Without a few small stars to heat up the gas on the right, dozens of small stars would form instead of one massive star. (29.1 Mb .mpg)


Source: By Robert Sanders, UC Berkeley

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Water was plentiful in the early universe

May 13, 2015

Astronomers have long held that water—two hydrogen atoms and an oxygen atom—was a relative latecomer to the universe. They believed that any element heavier than helium had to have been formed in the ...

More evidence that the Milky Way has four spiral arms

May 12, 2015

Astronomers have been arguing over just how many spiral arms our galaxy exhibits. Is the Milky Way a four or two-armed spiral galaxy? Astronomers had often assumed the Milky Way was potentially a four-armed ...

An improved model for star formation

May 08, 2015

Star formation, once thought to consist essentially of just the simple coalescence of material by gravity, actually occurs in a complex series of stages. As the gas and dust in giant molecular clouds come ...

Recommended for you

Hubble observes one-of-a-kind star nicknamed 'Nasty'

22 hours ago

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Galaxy's snacking habits revealed

May 20, 2015

A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.