The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. This work provides new clues as to how bacteria adapt to resist antibiotics and how to design new drugs that counteract this defense mechanism.

Frédéric Dardel and colleagues crystallized both the narrow and broad-spectrum resistance forms of the antibiotic-modifying acetyltransferase enzyme. Their report reveals that the enzyme has a flexible active site that can evolve to accommodate new antibiotics, allowing the bacteria to break them down and render them useless. This explains why this type of enzyme is now carried by many bacteria struggling for survival in the antibiotic age.

More importantly, the research provides new insight for the design of new antibiotics that could evade this form of resistance, and new inhibitors that would extend the effectiveness of current antibiotics, both of which could help in the fight against the deadly infections becoming more frequent in hospitals.

Article: www.nature.com/embor/journal/vaop/ncurrent/abs/embor20089.html

Source: European Molecular Biology Organization

Explore further: Biologists demonstrate how signals in plant roots determine the activity of stem cells

Related Stories

Producing jet fuel compounds from fungus

May 05, 2015

Washington State University researchers have found a way to make jet fuel from a common black fungus found in decaying leaves, soil and rotting fruit. The researchers hope the process leads to economically ...

Research prompts rethink of enzyme evolution

Apr 28, 2015

New research by scientists at New Zealand's University of Otago suggests a need for a fundamental rethink of the evolutionary path of enzymes, the proteins vital to all life on Earth.

New mechanisms of 'social networking' in bacteria

Apr 07, 2015

Bacteria have traditionally been viewed as solitary organisms that "hang out on their own," says molecular biologist Kevin Griffith of the University of Massachusetts Amherst. However, scientists now realize ...

Recommended for you

Bacterial tenants in fungal quarters

7 hours ago

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

Natural enzyme examined as antibiotics alternative

10 hours ago

In 1921, Alexander Fleming discovered the antimicrobial powers of the enzyme lysozyme after observing diminished bacterial growth in a Petri dish where a drop from his runny nose had fallen. The famed Scottish ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.