Researchers demonstrate a new type of optical tweezer

February 25, 2008
Microfabricated Fresnel Zone Plate Optical Tweezer
(a). Photograph of microfabricated Fresnel Zone Plate optical tweezer, consisting of concentric gold rings (50 nm thick) on a microscope slide. The Zone Plate outer diameter is 100¼m, and the focal length is 8¼m. (b). CCD camera image of fluorescent bead (2¼m diameter) trapped in Zone Plate focus. Credit: Ken Crozier, Harvard School of Engineering and Applied Sciences

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) demonstrated a new type of optical tweezer with the potential to make biological and microfluidic force measurements in integrated systems such as microfluidic chips. The tweezer, consisting of a Fresnel Zone Plate microfabricated on a glass slide, has the ability to trap particles without the need for high performance objective lenses.

The device was designed, fabricated, and tested by postdoctoral fellow Ethan Schonbrun and undergraduate researcher Charles Rinzler under the direction of Assistant Professor of Electrical Engineering Ken Crozier (all are affiliated with SEAS). The team's results were published in the February 18th edition of Applied Physics Letters and the researchers have filed a U.S. provisional patent covering this new device.

"The microfabricated nature of the new optical tweezer offers an important advantage over conventional optical tweezers based on microscope objective lenses," says Crozier. "High performance objective lenses usually have very short working distances -- the trap is often ~200 mm or less from the front surface of the lens. This prevents their use in many microfluidic chips since these frequently have glass walls that are thicker than this."

The researchers note that the Fresnel Zone Plate optical tweezers could be fabricated on the inner walls of microfluidic channels or even inside cylindrical or spherical chambers and could perform calibrated force measurements in a footprint of only 100x100μm.

Traditional tweezers, by contrast, would suffer from crippling aberrations in such locations. Moreover, in experimental trials, the optical tweezers exhibited trapping performance comparable to conventional optical tweezers when the diffraction efficiency was taken into account.

The researchers envision using their new tweezer inside microfluidic chips to carry out fluid velocity, refractive index, and local viscosity measurements. Additional applications include biological force measurements and sorting particles based on their size and refractive index. Particle-sorting chips based on large arrays of tweezers could be used to extract the components of interest of a biological sample in a high-throughput manner.

Source: Harvard University

Explore further: Light as puppeteer

Related Stories

Light as puppeteer

March 18, 2015

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have demonstrated a more robust method for controlling single, micron-sized particles with light.

Award-winning research on cell metabolism

February 9, 2015

A better understanding of the way metabolism works may in the long run mean make it easier to find new medicines for diseases such as diabetes. By combining different methods taken from physics, the researcher Anna-Karin ...

Robotics goes micro-scale

April 17, 2014

( —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the University of Bristol. ...

Recommended for you

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 25, 2008
>"High performance objective lenses usually have very short working distances -- the trap is often ~200 mm or less from the front surface of the lens. "
micrometers i presume not millimeters

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.