Obesity may be wired in the brain, rat study suggests

February 5, 2008

A predisposition for obesity might be wired into the brain from the start, suggests a new study of rats in the February issue of Cell Metabolism.

Rats selectively bred to be prone to obesity show abnormalities in a part of the brain critical for appetite control, the researchers found. Specifically, the researchers show that the obese rats harbor defects in neurons of the arcuate nucleus (ARH) of the hypothalamus, which leaves their brains less responsive to the hunger-suppressing hormone leptin.

“The neurodevelopmental differences in these animals can be seen as early as the first week,” said Sebastien Bouret of the University of Southern California. “The results show that obesity can be wired into the brain from early life. The three-million-dollar question now is how to get around this problem.”

It is increasingly accepted that obesity results from a combination of genetic and environmental factors, the researchers said. Rodent models of obesity can provide valuable insights into the biological processes underlying the development of obesity in humans. The “diet-induced obese” (DIO) rats used in the current study are particularly suited to the task, according to Bouret, because their tendency to become overweight shares several features with human obesity, including the contribution of many genes.

Previous studies had suggested that the brains of DIO rats are insensitive to leptin, the researchers added. Circulating leptin, produced by fat tissue, acts as a signal to the brain about the body’s energy status. Leptin is also critical for the initial development of ARH neurons.

In the new study, the researchers examined the obesity-prone rats for signs of abnormal brain development. They found that the animals’ brains had fewer neural projections from the ARH, a deficiency that persisted into adulthood. Those projections are needed to relay the leptin signal received by the ARH to other parts of the hypothalamus, Bouret said.

The researchers found further evidence that those changes in brain wiring stem from a reduced responsiveness of the brain to leptin’s action during development.

“It seems [in the case of these rats] that appetite and obesity are built into the brain,” Bouret said. While their condition might be ameliorated by exercising and eating right, he added, the findings suggest that the propensity to gain weight can’t be reversed.

But there is hope yet. It’s possible that treatments delivered during a critical early period of development might be capable of rewiring the brain, Bouret said.

Source: Cell Press

Explore further: Making heads and tails of embryo development

Related Stories

Making heads and tails of embryo development

October 27, 2015

Proteins usually responsible for the destruction of virally infected or cancerous cells in our immune system have been found to control the release from cells of a critical growth factor governing head and tail development ...

Key protein in cilia assembly identified

August 21, 2015

The group led by ICREA Research Professor Cayetano Gonzalez at IRB Barcelona, in collaboration with the group of Professor Giuliano Callaini from the University of Siena in Italy, has published a new study in Current Biology ...

Research on obesity targets the brain's use of fatty acids

January 4, 2011

Researchers at the University of Colorado School of Medicine have created a new and exciting mouse model to study how lipid sensing and metabolism in the brain relate to the regulation of energy balance and body weight. The ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.