NASA Team Demonstrates Robot Technology For Moon Exploration

February 27, 2008
NASA Team Demonstrates Robot Technology For Moon Exploration
A Robot to Find Water and Oxygen on the Moon. Credit: Carnegie Mellon University

During the 3rd Space Exploration Conference Feb. 26-28 in Denver, NASA will exhibit a robot rover equipped with a drill designed to find water and oxygen-rich soil on the moon.

"Resources are the key to sustainable outposts on the moon and Mars," said Bill Larson, deputy manager of the In-Situ Resource Utilization (ISRU) project. "It's too expensive to bring everything from Earth. This is the first step toward understanding the potential for lunar resources and developing the knowledge needed to extract them economically."

The engineering challenge was daunting. A robot rover designed for prospecting within lunar craters has to operate in continual darkness at extremely cold temperatures with little power. The moon has one-sixth the gravity of Earth, so a lightweight rover will have a difficult job resisting drilling forces and remaining stable. Lunar soil, known as regolith, is abrasive and compact, so if a drill strikes ice, it likely will have the consistency of concrete.

Meeting these challenges in one system took ingenuity and teamwork. Engineers demonstrated a drill capable of digging samples of regolith in Pittsburgh last December. The demonstration used a laser light camera to select a site for drilling then commanded the four-wheeled rover to lower the drill and collect three-foot samples of soil and rock.

"These are tasks that have never been done and are really difficult to do on the moon," said John Caruso, demonstration integration lead for ISRU and Human Robotics Systems at NASA's Glenn Research Center in Cleveland.

In 2008, the team plans to equip the rover with ISRU's Regolith and Environment Science and Oxygen and Lunar Volatile Extraction experiment, known as RESOLVE. Led by engineers at NASA's Kennedy Space Center, Fla., the RESOLVE experiment package will add the ability to crush a regolith sample into small, uniform pieces and heat them.

The process will release gases deposited on the moon's surface during billions of years of exposure to the solar wind and bombardment by asteroids and comets. Hydrogen is used to draw oxygen out of iron oxides in the regolith to form water. The water then can be electrolyzed to split it back into pure hydrogen and oxygen, a process tested earlier this year by engineers at NASA's Johnson Space Center in Houston.

"We're taking hardware from two different technology programs within NASA and combining them to demonstrate a capability that might be used on the moon," said Gerald Sanders, manager of the ISRU project. "And even if the exact technologies are not used on the moon, the lessons learned and the relationships formed will influence the next generation of hardware."

Engineers participated in the ground-based rover concept demonstration from four NASA centers, the Canadian Space Agency, the Northern Centre for Advanced Technology in Sudbury, Ontario, and Carnegie Mellon University's Robotics Institute in Pittsburgh.

Carnegie Mellon was responsible for the robot's design and testing, and the Northern Centre for Advanced Technology built the drilling system. Glenn contributed the rover's power management system. NASA's Ames Research Center in Moffett Field, Calif., built a system that navigates the rover in the dark. The Canadian Space Agency funded a Neptec camera that builds three-dimensional images of terrain using laser light.

All the elements together represent a collaboration of the Human Robotic Systems and ISRU projects at Johnson. These projects are part of the Exploration Technology Development Program, which is managed by NASA's Langley Research Center in Hampton, Va.

Source: NASA

Explore further: Rosetta: The end of a space odyssey

Related Stories

Rosetta: The end of a space odyssey

September 26, 2016

Europe's trailblazing deep-space comet exploration for clues to the origins of the Solar System ends Friday with the Rosetta orbiter joining robot lab Philae on the iceball's dusty surface for eternity.

Geologic studies are a big part of upcoming space missions

September 14, 2016

In the coming decades, the world's largest space agencies all have some rather big plans. Between NASA, the European Space Agency (ESA), Roscosmos, the Indian Space Research Organisation (ISRO), or the China National Space ...

NASA sails full-speed ahead in solar system exploration

July 18, 2016

NASA's Juno is now poised to shine a spotlight on the origins and interior structure of the largest planet in our solar system. As we wait for Juno's first close-up images of Jupiter (to be taken Aug. 27 during the spacecraft's ...

Recommended for you

Scientists investigate unidentified radio sources

September 28, 2016

(Phys.org)—A team of researchers led by Andrea Maselli of the Institute of Space Astrophysics and Cosmic Physics of Palermo, Italy, has conducted an observational campaign of a group of unassociated radio sources with NASA's ...

The frontier fields: Where primordial galaxies lurk

September 28, 2016

In the ongoing hunt for the universe's earliest galaxies, NASA's Spitzer Space Telescope has wrapped up its observations for the Frontier Fields project. This ambitious project has combined the power of all three of NASA's ...

Research resolves a debate over 'killer electrons' in space

September 28, 2016

New findings by a UCLA-led international team of researchers answer a fundamental question about our space environment and will help scientists develop methods to protect valuable telecommunication and navigation satellites. ...

Kepler watched a Cepheid star boil

September 28, 2016

After four years of continuous monitoring, astronomers detected clear signs of convective cells in a giant pulsating star for the first time using the Kepler space telescope.

The ultraviolet diversity of supernovae

September 28, 2016

Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor stars, including ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.