You can't teach old materials new tricks

February 16, 2008
You can't teach old materials new tricks
A graphic timeline of key radiation detection material discoveries. Credit: Pacific Northwest National Laboratory

A more sensitive, more selective and easily deployable radiation detection material is necessary to meet complex 21st century challenges. In the AAAS symposium “Radiation Detectors for Global Security: The Need for Science-Driven Discovery,” researchers addressed some of the technical challenges and gaps and proposed a science-driven approach to uncovering novel materials that will benefit national security and medicine.

“Until now, it can be argued that we’ve approached the challenge in an Edisonian-style; I think it’s time to make a drastic change in how we pursue solutions to radiation detection,” said Anthony Peurrung, director of the Physical and Chemical Sciences division at Pacific Northwest National Laboratory.

“In order for us to make new discoveries, we need to improve our understanding of radiation physics so that we make educated choices about which materials will and will not perform as we need them to, thus working more efficiently toward a solution.”

Five primary materials are used for radiation detection, but they all have limitations, such as small size, challenges in manufacturing, poor discrimination of radionuclides and poor sensitivity. For example, single crystalline materials, used as semiconductors or scintillators, generally provide the highest sensitivity and best energy resolution. But, it can take a decade or more to develop high-quality, single crystals that are of sufficient size for use as radiation detectors, and there are a limited number of manufacturing facilities to produce the crystals.

Peurrung leads PNNL’s Radiation Detection and Material Discovery Initiative, which is a three-year, $4.5 million research effort aimed at discovering new materials for radionuclide identification, accelerating discovery processes and improving our fundamental understanding of radiation detection.

Bill Weber, a Laboratory Fellow, organized the symposium. He is a AAAS fellow and is internationally recognized for his seminal scientific contributions on the interaction of radiation with solids and radiation effects in materials.

Source: Pacific Northwest National Laboratory

Explore further: Study of SLAC National Accelerator Laboratory explores the state of "Big Science"

Related Stories

Smarter window materials can control light and energy

July 22, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal ...

Is your fear of radiation irrational?

July 14, 2015

Bad Gastein in the Austrian Alps. It's 10am on a Wednesday in early March, cold and snowy – but not in the entrance to the main gallery of what was once a gold mine. Togged out in swimming trunks, flip-flops and a bath ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.