Isocitric acid from fermentation of sunflower oil -- a new building block for pharma?

February 4, 2008

The citric acid cycle, one of the most important metabolic processes in our bodies, was formulated in 1937. Since then, all of the intermediates have been produced in multigram quantities—with one exception, (2 R,3S)-isocitric acid. Athanassios Giannis and his team at the University of Leipzig have finally done it.

As they report in the journal Angewandte Chemie, their process, a combination of one biotechnological and one chemical step, starts with sunflower oil, a renewable starting material. Isocitric acid and its derivatives thus become accessible on a kilogram scale.

In the citric acid cycle, acetyl CoA, formed in the breakdown of lipids, sugars, and amino acids, is used to produce energy that is biochemically available to an organism. Carbon dioxide and water are produced in this process. This reaction mechanism is named after one of the intermediate products, the anion of citric acid.

In nature, isocitric acid is always found with its isomer, citric acid. The difference between these two compounds is merely that the hydroxy group (-OH) is bound to a different carbon atom of each molecule. Large-scale separation of the two isomers has not been possible. A fermentative synthesis of the pure compound has also not worked.

Giannis team has now finally done it, thanks to a host of tiny helpers, the yeast Yarrowia lipolytica, which produces isocitrate from refined sunflower oil in previously unachievable yield and in a favorable isocitrate to citrate ratio. After the biomass is filtered out, electrodialysis is used to obtain the pure acids. The researchers use a trick to separate citric acid from isocitric acid: They use methanol to convert the compounds into the corresponding methyl esters. Why does this work? Whereas the citric acid ester crystallizes, the isocitric acid ester is a liquid. Separation then becomes child’s play.

Why was isocitric acid so important to these researchers? Isocitric acid is a compound with chiral centers—carbon atoms with four different groups bound to them. There are always two versions of a chiral center, one being the mirror image of the other. Smaller, easily accessible chiral compounds are useful building blocks for the synthesis of complex natural products and are interesting starting materials for the pharmaceutical industry. Isocitric acid makes available a new assortment of such chiral building blocks.

Citation: Athanassios Giannis, Syntheses with a Chiral Building Block from the Citric Acid Cycle: (2R,3S)-Isocitric Acid by Fermentation of Sunflower Oil, Angewandte Chemie International Edition, doi: 10.1002/anie.200705000

Source: Angewandte Chemie

Related Stories

Recommended for you

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.