Gene found to play a suppressor role in skin cancer development

Feb 06, 2008

Researchers at the Burnham Institute for Medical Research (Burnham Institute) have provided genetic evidence that Activating Transcription Factor 2 (ATF2) plays a suppressor role in skin cancer development. ATF2 is a protein that regulates gene transcription, which is the first step in the translation of genetic code, in response to extracellular stresses such as ultraviolet light and ionizing radiation. This function of ATF2 in stress and DNA damage response suggests that it may also play a role in the formation of tumors.

Previous studies led by Ze’ev Ronai, Ph.D. have suggested an important role of ATF2 in melanoma development and progression. In this new study, published in this week’s issue of Proceedings of the National Academy of Sciences of the United States of America, the Ronai laboratory, in collaboration with Nic Jones, Ph.D. from the University of Manchester UK, used a mouse model that expresses a transcriptionally inactive form of ATF2 in skin cells (keratinocytes). When the mice were subjected to chemically mediated skin carcinogenesis, tumors appeared faster and more frequently. These findings reveal that loss of ATF2 transcriptional activity in skin exposed to carcinogens enhances skin tumor formation, suggesting a tumor suppressor role for ATF2 in keratinocytes.

“Important support for the finding comes from the analysis of tumor samples from human patients with non malignant skin cancer,” states Dr. Ronai. “Unlike the strong nuclear expression of ATF2 in normal skin, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) samples exhibit a significantly reduced nuclear staining for ATF2.”

The analysis of human skin cell carcinomas are also consistent with the reduced expression of ATF2 found in the papillomas that developed in the wild-type animals in this study, supporting the notion that ATF2 needs to be inactivated to support skin tumor development.

The group also identified ATF2 as an upstream regulator of genes including Presenilin1 (PS1), Notch1, and â-catenin, all of which have previously been reported to be involved in skin tumor development; thus providing an example of a mechanism by which ATF2 functions as a tumor suppressor.

Source: Burnham Institute

Explore further: New research leads to FDA approval of first drug to treat radiation sickness

Related Stories

New Japan volcano island 'natural lab' for life

15 hours ago

A brand new island emerging off the coast of Japan offers scientists a rare opportunity to study how life begins to colonise barren land—helped by rotting bird poo and hatchling vomit.

Recommended for you

Vortex device makes for better cancer treatments

22 hours ago

A South Australian invention, responsible for unboiling an egg, has been used to produce a four-fold increase in efficacy of carboplatin, a commonly used drug for ovarian, lung and other cancer. ...

Using healthy skin to identify cancer's origins

May 21, 2015

Normal skin contains an unexpectedly high number of cancer-associated mutations, according to a study published in Science. The findings illuminate the first steps cells take towards becoming a cancer and de ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.