Dutch University Tests Windmill for Seawater Desalination

February 29, 2008
Dutch University Tests Windmill for Seawater Desalination
A traditional windmill which drives a pump: that is the simple concept behind the combination of windmill/reverse osmosis developed by the Delft University of Technology in the Netherlands. Credit: Evgenia Rabinovitch

A traditional windmill which drives a pump: that is the simple concept behind the combination of windmill/reverse osmosis developed by the Delft University of Technology (TU Delft) in The Netherlands. In this case, it involves a high-pressure pump which pushes water through a membrane using approximately 60 bar. This reverse osmosis membrane produces fresh water from seawater directly. The windmill is suited for use by, for instance, small villages in isolated, dry coastal areas.

The combination of windmills and desalination installations is already commercially available. These windmills produce electricity from wind power, the electricity is stored and subsequently used to drive the high-pressure pump for the reverse osmosis installation. The storage of electricity in particular is very expensive. Energy is also lost during conversion.

In the TU Delft installation, the high-pressure pump is driven directly by wind power. Water storage can be used to overcome calm periods. The storage of water is after all a great deal cheaper than that of electricity.

The chosen windmill is normally used for irrigation purposes. These windmills turn relatively slowly and are also very robust. On the basis of the windmill’s capacity at varying wind speeds, it is estimated that it will produce 5 to 10 m3 of fresh water per day: enough drinking water for a small village of 500 inhabitants.

A water reservoir will have to ensure that enough water is available for a calm period lasting up to five days. Three safeguards (in the event of the installation running dry, a low number of revolutions or a high number of revolutions) are also performed mechanically so that no electricity is needed.

The first prototype has been built and is already working at a location near the A13 motorway near Delft. This prototype is to be dismantled and transported to Curaçao the first week of March. There the concept will be tested on seawater.

Source: Delft University of Technology

Explore further: Delft professor puts kites high on list for renewable energy

Related Stories

Delft professor puts kites high on list for renewable energy

July 13, 2013

(Phys.org) —The word "kite" at the Delft University of Technology hardly means summertime fun and recreation. Rather, scientists see "kite" as an important airborne wind technology, with advantages lacking in wind turbines. ...

Bio-mimicry and space exploration

October 29, 2015

What DaVinci was talking about, though it wasn't called it at the time, was biomimicry. Biomimicry is the practice of using designs from the natural world to solve technological and engineering problems. Were he alive today, ...

Recommended for you

Plans for self-driving cars have pitfall: the human brain

July 19, 2016

Experts say the development of self-driving cars over the coming decade depends on an unreliable assumption by many automakers: that the humans in them will be ready to step in and take control if the car's systems fail.

How to build a 1,000mph car (by the scientists behind it)

July 22, 2016

It was a staggering feat, a car that went faster than the speed of sound. On October 15 1997, Andy Green travelled across the Black Rock Desert, Nevada, in the Thrust SSC at 763.035 mph, or Mach 1.02. Two decades on, that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.