Listening for the cosmic symphony: New SU supercomputer will help scientists listen for black holes

February 8, 2008

Scientists hope that a new supercomputer being built by Syracuse University's Department of Physics may help them identify the sound of a celestial black hole. The supercomputer, dubbed SUGAR (SU Gravitational and Relativity Cluster), will soon receive massive amounts of data from the California Institute of Technology (Caltech) that was collected over a two-year period at the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Duncan Brown, assistant professor of physics and member of SU's Gravitational Wave Group, is assembling SUGAR. The department's Gravitational Wave Group is also part of the LIGO Scientific Collaboration (LSC), a worldwide initiative to detect gravitational waves. Brown worked on the LIGO project at Caltech before coming to SU last August.

Gravitational waves are produced by violent events in the distant universe, such as the collision of black holes or explosions of supernovas. The waves radiate across the universe at the speed of light. While Albert Einstein predicted the existence of these waves in 1916 in his general theory of relativity, it has taken decades to develop the technology to detect them. Construction of the LIGO detectors in Hanford, Wash., and Livingston, La., was completed in 2005. Scientists recently concluded a two-year "science run" of the detectors and are now searching the data for these waves. LSC scientists will be analyzing this data while the sensitivity of the detectors is being improved. Detectors have also been built in France, Germany, Italy and Japan.

Before they can isolate the sound of a black hole from the LIGO data, the scientists must figure out what a black hole sounds like. That's where Einstein's theories come in. Working with colleagues from the Simulating eXtreme Spacetimes (SXS) project, Brown will use SUGAR and Einstein's equations to create models of gravitational wave patterns from the collision of two black holes. SXS is a collaborative project with Caltech and Cornell University.

Black holes are massive gravitational fields in the universe that result from the collapse of giant stars. Because black holes absorb light, they cannot be studied using telescopes or other instruments that rely on light waves. However, scientists believe they can learn more about black holes by listening for their gravitational waves.

"Looking for gravitational waves is like listening to the universe," Brown says. "Different kinds of events produce different wave patterns. We want to try to extract a wave pattern -- a special sound -- that matches our model from all of the noise in the LIGO data."

It takes massive amounts of computer power and data storage capacity to analyze the data against the gravitational wave models Duncan and his colleagues built. SUGAR is a collection of 80 computers, packing 320 CPUs of power and 640 Gigabytes of random access memory. SUGAR also has 96 terabytes of disk space on which to store the LIGO data.

It also takes a dedicated, high-speed fiber-optic network to transfer the data between Caltech and SU. To accomplish that, SU's Information Technology and Services (ITS) collaborated with NYSERNet to build a special pathway for the LIGO data on the high-speed fiber optic network that crisscrosses the United States. The one-gigabit pathway begins in the Physics Building and traverses SU's fiber-optic network to Machinery Hall and then to a network facility in downtown Syracuse, which the University shares with NYSERNet. From there, the pathway connects to NYSERNet's fiber-optic network and goes to New York City. In New York City, the pathway switches to the Internet2 high-speed network and traverses the country, ending in a computer room in Caltech.

Both the supercomputer and the high-speed network are expected to be up and running by the end of February. Once the data is transferred to SU from Caltech, Brown and his LSC colleagues will begin to listen to the "cosmic symphony." "Gravitational waves can teach us much about what is out there in the universe," Brown says. "We've never looked at Einstein's theory in this way."

LIGO is funded by the National Science Foundation and operated by Caltech and the Massachusetts Institute of Technology.

Source: Syracuse University

Explore further: Will we have to rewrite Einstein's theory of general relativity?

Related Stories

Don't stop me now! Superluminal travel in Einstein's universe

November 27, 2015

The story of the drawn-out development of Albert Einstein's revolutionary rewrite of the laws of gravity has been told many times, but over the past 100 years it has given us extreme stars and black holes, expanding universes ...

Doomed quasar is heading for a powerful explosion

November 10, 2015

(—PKS 1302-102 is one of the few known quasars with a pair of black holes within its accretion disc. It is also a curious case for astronomers as it will produce a powerful explosion when these two black holes ...

Swift spacecraft spots its thousandth gamma-ray burst

November 6, 2015

NASA's Swift spacecraft has detected its 1,000th gamma-ray burst (GRB). GRBs are the most powerful explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole.

Ten ways advanced computing catalyzes science

November 19, 2015

When researchers need to compare complex new genomes, or map new regions of the Arctic in high-resolution detail, or detect signs of dark matter, or make sense of massive amounts of functional MRI data, they turn to the high-performance ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Feb 09, 2008
What pattern could be expected for a black hole vs. binary star?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.