Avian origins: new analysis confirms ancient beginnings

February 5, 2008

Did modern birds originate around the time of the dinosaurs' demise, or have they been around far longer?

The question is at the center of a sometimes contentious "rocks versus clocks" debate between paleontologists, whose estimates are based on the fossil record, and scientists who use "molecular clock" methods to study evolutionary history.

A new analysis by researchers at the University of Michigan, the University of Chicago, the Centre for Biodiversity Conservation Mexico and Central America, and Boston University offers the strongest molecular evidence yet for an ancient origin of modern birds, suggesting that they arose more than 100 million years ago, not 60 million years ago, as fossils suggest.

The research was published online Jan. 28 in the journal BMC Biology.

"Scientists typically use two sources of information to date biological events: the fossil record, which contains physical remains of ancient organisms, and molecular genetic data," said graduate student Joseph Brown, who is first author on the paper. In the case of modern birds, however, the two approaches have yielded conflicting results, at times leading to heated debates between paleontologists and molecular biologists. Molecular biologists have asserted that the fossil record must be incomplete, while paleontologists have countered that the genetic data must be suspect.

In fact, both approaches have their weaknesses, Brown said. Fossils tend to underestimate how much time has passed since lineages diverged. That's because fossils preserve only evidence of changes in outward physical appearance, and such changes take some time to accumulate after the actual "speciation event" that marks the divergence.

As for genetic data, the so-called molecular clock isn't quite as precise as once thought. The approach relies on the observation that although mutations occur at random in the genome, when looked at over long stretches of time they occur (or "tick") at a fairly constant rate. Molecular biologists use that rate to reconstruct evolutionary history.

"If we know, for example, that DNA sequences diverge by an average of two percent every million years, and we determine that two species differ genetically by ten percent, we can figure out that they last shared a common ancestor five million years ago," Brown said. The problem is, "different lineages can 'tick' at different rates, so applying a single rate to an entire tree could lead to very suspect results."

Fortunately, new methods exist for compensating for differing rates.

"What my colleagues and I did was apply all of these new methods to the problem of the origin of modern birds, with each method making different assumptions about how mutation rate changes across the tree," Brown said. He hoped the analysis would narrow the gap between fossil and molecular data, but in fact it only reinforced the rock-clock split by underscoring the finding that modern birds arose more than 100 million years ago.

So where does that leave the contentious camps of scientists trying to solve the puzzle of how the world's 10,000 bird species came about?

"Rather than fighting across groups, we now have the joint goal of explaining this rock-clock gap," Brown said. "Resolution of the issue will be fertile ground for future research for a while to come."

Brown's coauthors on the paper are Joshua Rest of the University of Chicago, Jaime García-Moreno of the Centre for Biodiversity Conservation Mexico and Central America, Michael Sorenson of Boston University and David Mindell, professor of ecology and evolutionary biology at U-M.

Source: University of Michigan

Explore further: Technology helps personalized medicine, enabling epigenomic analysis with a mere 100 cells

Related Stories

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

The virtual laboratory

July 23, 2015

Supercomputers can be used to simulate materials at vastly diverse scales, from the flow of air past an aeroplane's wing down to the movement of electrons around individual atoms. Different length and time scale domains provide ...

The mystery of the instant noodle chromosomes

July 23, 2015

A group of researchers from the Lomonosov Moscow State University tried to address one of the least understood issues in the modern molecular biology, namely, how do strands of DNA pack themselves into the cell nucleus. Scientists ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Recommended for you

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tgoldman
5 / 5 (1) Feb 05, 2008
How do these researchers know that the "tick" rate is not dependent upon the mean temperature environment? Since adaptation takes less than the time scale studied, it is possible that the molecular clock rate varied also.

In the long controversy over the Hubble constant, it turned out that both major factions were wrong and the now accepted value lies about midway between the earlier conflicting values.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.