Forever young: Differentiation blocked in tumor stem cells

January 7, 2008

A new comparison of normal stem cells and cancer stem cells reveals that the cancer stem cells are abnormally trapped at an early stage of development. The research, published by Cell Press in the January issue of Cancer Cell, significantly advances the understanding of glioma pathophysiology and provides new directions for design of therapeutic strategies that are targeted to specific types of tumors.

Tumor-initiating cells with stem like properties (TICs) are thought to be a small population of tumor cells that have many characteristics in common with normal stem cells (NSCs) in that they are self-replicating and capable of giving rise to populations of differentiated cells. Previous research has demonstrated that TICs are present in different types of brain tumors, including glioblastomas. Although the TICs share many properties with NSCs, they are known to possess genetic aberrations that support a tumorigenic phenotype.

“Thus far, there have been few, if any, reports demonstrating exactly where along the developmental pathway of tissue-specific stem cell maturation and differentiation tumor stem cells arise, and which, if any, of the intrinsic stem cell signaling pathways are perturbed in tumor stem cells remains largely unknown,” explains Dr. Howard A. Fine from the National Cancer Institute in Bethesda, Maryland. To better understand the development and differentiation pathways that play a significant role in cancer stem cells, Dr. Fine and colleagues isolated TICs from primary human glioblastomas and compared them to human and mouse NSCs at various developmental stages.

The researchers found that the TICs isolated from an adult patient are more similar to early embryonic stem cells than to later embryonic or adult-derived stem cells. Specifically, the TICs appear to be stuck at this early developmental stage, at least in part, due to epigenetic repression of bone morphogenic protein receptor 1B (BMPR1B) expression mediated through a polycomb repressive complex. BMPs are known to mediate proliferation, differentiation and apoptosis in NSCs, depending on the stage of cell development and the local environment. Importantly, forced expression of the silenced BMPR1B restored normal differentiation capacity to the isolated TICs, halting further cell division and inducing terminal differentiation.

“Our research provides an example of a temporally deregulated and aberrantly fixed normal stem cell developmental block to differentiation contributing to the pathogenesis of a human tumor. Not only will such insights pave the way for a more thorough understanding of tumor stem cell biology, but they also identify BMPR1B as a promising molecular target and open the potential for targeted therapeutic approaches for agents that can induce terminal differentiation of tumor stem cells,” offers Dr. Fine.

Source: Cell Press

Explore further: How a single molecule turns one immune cell into another

Related Stories

How a single molecule turns one immune cell into another

July 30, 2015

All it takes is one molecule to reprogram an antibody-producing B cell into a scavenging macrophage. This transformation is possible, new evidence shows, because the molecule (C/EBPa, a transcription factor) "short-circuits" ...

Sex among eukaryotes is far more common than once believed

July 28, 2015

(Phys.org)—For a long time, biologists have considered sex to be an inherent trait of multicellular life, while microbial eukaryotes were considered to be either optionally sexual or purely clonal. From this perspective, ...

New material forges the way for 'stem cell factories'

July 22, 2015

If you experience a major heart attack the damage could cost you around five billion heart cells. Future stem cell treatments will require this number and more to ensure those cells are replaced and improve your chances of ...

Stem cells have more reserves for DNA replication

July 17, 2015

In cell division, nothing is as important as the precise replication of billions of genetic letters that make up DNA. Since this genomic integrity is so fundamental to survival, scientists had assumed that replication mechanisms ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.