Researchers look for smaller, cheaper, one-dose vaccines

January 15, 2008

A team of Iowa State University researchers is examining a new vaccine method that may change the way we get vaccinations.

Michael Wannemuehler and his team of researchers is hoping to find a way to produce vaccines that work better, use smaller doses and require only one trip to the doctor's office.

Traditionally, injectable vaccines have often been prepared from killed bacteria. The vaccinated person's immune system then learns to recognize the bacteria as a threat and consequently builds up defenses against it. Then, if the individual is exposed to the live version of the infectious agent, his or her body is already prepared to defend itself.

Wannemuehler's research is focused on the use of just a part of the bacteria -- a protein -- as a vaccine, instead of the entire bacteria, coupled with novel polymers that will be used to deliver these vaccines. This combination of new approaches will allow vaccines doses to be smaller, safer and induce fewer side effects.

"As we move away from using whole bacteria, we're going to more molecular approaches with purified proteins or portions of proteins," said Wannemuehler, a professor of veterinary microbiology and preventative medicine. "What these technologies should allow us to do is, instead of injecting 100 units to get protection, we can inject one unit, for example."

Wannemuehler's research targets the bacteria that causes plague, a disease that's rare in the United States, but is still found in other parts of the world.

Using select proteins of the bacteria coupled with unique polymers can reduce the amount of vaccine needed as well as costs for shipping and storage. That makes the vaccine economically feasible for areas at a great distance, such as Africa, where vaccines can be difficult to obtain.

Also, vaccinating a large population can be difficult if more than one dose or injection is required. In places where doctors are scarce, locating and vaccinating patients can be difficult. In addition, having the same patients return for their booster vaccinations can be even more complicated.

"Another aspect is the hope that this would be single dose," said Wannemuehler. "We hope we can get a robust response with one dose."

And there will likely be uses beyond the plague.

"If this technology works here," said Wannemuehler, "it's completely transferable to any protein, with minor changes."

Wannemuehler is working with BioProtection Systems Corp. of Ames on this research. BPSC hopes to supply lower-cost vaccines to government agencies for use where the plague is still a threat.

"We are thankful that the Iowa Values Fund supports our collaboration with Iowa State University and allows us to combine our broadly applicable vaccine technology with theirs for the development of more effective vaccines," said Joe Lucas of BPSC, located at the Iowa State University Research Park.

Source: Iowa State University

Explore further: Researchers identify protein that allows Bordetella pertussis to form a protective biofilm

Related Stories

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Olympic teams to swim, boat in Rio's filth

July 30, 2015

Athletes competing in next year's Summer Olympics here will be swimming and boating in waters so contaminated with human feces that they risk becoming violently ill and unable to compete in the games, an Associated Press ...

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.