Scientists Link Natural Gas Formation by Bacteria to Climate Change and Renewable Energy

Jan 28, 2008

Natural gas reservoirs in Michigan’s Antrim Shale are providing new information about global warming and the Earth’s climate history, according to a recent study by Steven Petsch, a geoscientist at the University of Massachusetts Amherst. The study is also good news for energy companies hoping to make natural gas a renewable resource. Results were published in the February 2008 issue of Geology.

Petsch found that carbon-hungry bacteria trapped deep in the rock beneath ice sheets produced the gas during the ice age, as glaciers advanced and retreated over Michigan. “Bacteria digested the carbon in the rocks and made large amounts of natural gas in a relatively short time, tens of thousands of years instead of millions,” says Petsch. “This suggests that it may be possible to seed carbon-rich environments with bacteria to create natural gas reservoirs.”

The study also helps explain high levels of methane in the atmosphere that occurred between ice ages, a trend recorded in ice cores taken from Greenland and Antarctica. “When the ice sheets retreated, it was like uncapping a soda bottle,” says Petsch. “Natural gas, which is mostly methane, was released from the shale into the atmosphere.”

This research can be used in current climate change models to account for the effects of melting glaciers,” says Petsch. “Climate scientists haven’t focused on the role that geologic sources of methane play in global warming.”

Petsch used the chemistry of water and rock samples from the shale, which sits like a bowl beneath northern Michigan, to recreate the past. For most of its history, the Antrim Shale contained water that was too salty to allow bacteria to grow. But areas rich in natural gas showed an influx of fresh water that was chemically different from modern rainfall. “This water, which is similar to meltwater from glaciers formed during the ice age, was injected into the rock by the pressure of the overlying ice sheets,” says Petsch.

Glacial meltwater diluted the salt water already present in the shale, allowing the bacteria to thrive and quickly digest available carbon. The natural gas they produced was chemically similar to the surrounding water and had a unique carbon chemistry that proved its bacterial origin. Petsch calculated that trillions of cubic feet of natural gas were eventually stored in the shale under pressure.

At least 75 percent of the gas was released into the atmosphere as the ice sheets retreated, adding to methane from other sources such as tropical wetlands. While methane from the Antrim Shale accounts for a small fraction of the rise in methane observed between ice ages, there are many natural gas deposits that were formed in the same geologic setting. The cumulative effect may have caused large emissions of methane to the atmosphere.

Klaus N?sslein of the UMass Amherst microbiology department analyzed DNA from water samples and identified bacteria capable of breaking down hydrocarbons in the rock. Other microbes were present that produced methane from the break-down products. Both of these groups can live without oxygen. Identifying and studying the needs of these microbes, which are capable of living deep in the Earth, is an important step in creating new natural gas reserves.

Additional members of the team include post-doctoral researcher Michael Formolo and undergraduate student Jeffrey Salacup of the University of Massachusetts Amherst and Anna Martini, a professor of geology at Amherst College.

Source: University of Massachusetts Amherst

Explore further: Researchers explain mystery of India's rapid move toward Eurasia 80 million years ago

Related Stories

Groups want review of Shell's Arctic regulatory filings

Apr 28, 2015

Two groups petitioned the U.S. Securities and Exchange Commission on Monday for an investigation of Royal Dutch Shell PLC and what the groups call misstatements in regulatory filings regarding the risk of a catastrophic oil ...

Recommended for you

Fjords are 'hotspots' in global carbon cycling

9 hours ago

While fjords are celebrated for their beauty, these ecosystems are also major carbon sinks that likely play an important role in the regulation of the planet's climate, new research reveals.

Warm oceans caused hottest Dust Bowl years in 1934/36

9 hours ago

Two ocean hot spots have been found to be the potential drivers of the hottest summers on record for the Central US in 1934 and 1936. The research may also help modern forecasters predict particularly hot ...

Ocean currents disturb methane-eating bacteria

9 hours ago

Offshore the Svalbard archipelago, methane gas is seeping out of the seabed at the depths of several hundred meters. These cold seeps are a home to communities of microorganisms that survive in a chemosynthetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.