Plumbing Carbon Nanotubes

January 7, 2008 By Laura Mgrdichian feature

Scientists have determined how to connect carbon nanotubes together like water pipes, a feat that may lead to a whole new group of bottom-up-engineered nanostructures and devices.

The researchers, from Japan's National Institute of Advanced Industrial Science and Technology, were able to “plumb” together nanotubes with similar or equal diameters using a technique they developed. They expect that their method could be used in the future to seamlessly join carbon nanotubes regardless of their diameters.

“Our method could allow longer carbon nanotubes to be created, and even nanotubes with multiple branches,” the study's corresponding scientist, Chuanhong Jin, said to PhysOrg.com. “Such structures could have many applications, such as field-effect transistors or current lead-wires.”

The work is described in a paper in Nature Nanotechnology.

Working through the eyes of a transmission electron microscope, which allowed them to watch the process as it occurred, Jin and his colleagues first split a single carbon nanotube by bridging it across two electrodes and applying a high current. This caused the middle section of the nanotube to become gradually narrower until it eventually split, resulting in two nanotubes with equal diameters and closed, or capped, ends.

The capped ends were moved near each other and the voltage across the electrodes was slowly raised from zero. At certain threshold values of voltage and current, the two nanotubes suddenly joined again. This process was so quick that Jin and his colleagues are as yet unsure of how it occurs.

The researchers found that they could repeat this split/join process on the same nanotube several times; so far, up to seven times.

The group also attempted to join carbon nanotubes with different diameters, but were not successful. In each case, at a certain threshold of voltage and current, an obvious deformation occurred on the cap of the larger nanotube. The nanotubes would then detach, pulling away from each other, and the cap structures of both nanotubes seemed to change, causing a shrinkage in length. Attempts to reposition and attach the nanotubes produced the same results.

“It seems intrinsically difficult to join two carbon nanotubes with entirely different diameters,” says Jin.

The difficulties seem to arise from the nanotubes' “chiralities”—whether the carbon atoms are bonded in chains that run straight down the tube or chains that twist around it. Two nanotubes made from the same mother tube have the same chirality, but nanotubes with different diameters rarely do. This mismatch caused problems at the atomic level when the scientists attempted to force the tubes to merge.

But the scientists came up with a fix: inserting tungsten atoms between the two nanotubes to catalyze the joining process. Tungsten has long been known to help carbon atoms “graphitize,” or arrange themselves into ordered structures, as are found in one crystal form of carbon, graphite. By moving the particle back and forth during the annealing process, the nanotubes joined seamlessly.

Citation: Chuanhong Jin, Kazu Suenaga, and Sumio Iijima Nature Nanotechnology advance online publication, 9 December 2007 (doi:10.1038/nnano.2007.406)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Researchers resolve a problem that has been holding back a technological revolution

Related Stories

Development of a novel carbon nanomaterial 'pot'

August 5, 2016

A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced. This unique characteristic enables the material ...

Nanoribbons in solutions mimic nature

August 15, 2016

Graphene nanoribbons (GNRs) bend and twist easily in solution, making them adaptable for biological uses like DNA analysis, drug delivery and biomimetic applications, according to scientists at Rice University.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.