U of M physicist reads the history of the solar system in grains of comet dust

January 3, 2008
Artist's impression of Stardust's encounter with Comet Wild 2. Credit: NASA
Artist´s impression of Stardust´s encounter with Comet Wild 2. Scientists believe the material snatched from the trail of a comet could provide dramatic information about the birth of the solar system and the origins of life on Earth. Launched in 1999, the 385-kilogram (849-pound) probe, circled the Sun twice and then flew in January 2004 by comet Wild 2, which was located at the time next to Jupiter. Credit: NASA

Four years ago, NASA's Stardust spacecraft chased down a comet and collected grains of dust blowing off its nucleus. When the spacecraft Comet Wild-2 returned, comet dust was shipped to scientists all over the world, including University of Minnesota physics professor Bob Pepin. After testing helium and neon trapped in the dust specks, Pepin and his colleagues report that while the comet formed in the icy fringes of the solar system, the dust appears to have been born close to the infant sun and bombarded by intense radiation from these and other gases before being flung out beyond Neptune and trapped in the comet. The research appears in the Jan. 4 issue of the journal Science.

The finding opens the question of what was going on in the early life of the solar system to subject the dust to such intense radiation and hurl them hundreds of millions of miles from their birthplace.

The studies of cometary dust are part of a larger effort to trace the history of our celestial neighborhood.

"We want to establish what the solar system looked like in the very early stages," said Pepin. "If we establish the starting conditions, we can tell what happened in between then and now." One early event was the birth of Earth's moon, about 50 million years after the solar system formed.

Also, the gases he studies have relevance even closer to home. "Because some scientists have proposed that comets have contributed these gases to the atmospheres of Earth, Venus and Mars, learning about them in comets would be fascinating," he said.

Comet Wild-2 (pronounced Vilt-two) is thought to have originated in the Kuiper Belt, a comet-rich region stretching from just inside the orbit of Neptune to well beyond Pluto. As it grew in this roughly -360 F region, it incorporated grains of dust and ambient gas.

The comet received a visit from the Stardust spacecraft in early January 2004, two years after its launch. Veering as close as 149 miles to the comet nucleus, Stardust used a spongy, ultralight glass-fiber material called aerogel to trap the dust. At the moment of encounter, the spacecraft exposed a sheet of aerogel -- supported by a framework -- to the stream of particles blowing off the nucleus.

"It looked like a tennis racket," said Pepin. "It was exposed for approximately 20 minutes."

The aerogel trapped aggregates of fine particles that hit at 13,000 miles per hour and split on impact. The collisions left drumstick-shaped trails pointing inward from the surface of the aerogel.

After the collection, the spacecraft headed home and parachuted its payload safely back to Earth in January 2006. A few months later, Pepin received three sub-samples of particles and colleagues at Nancy University, France, received two others, all from the same particle "hit."

Their task was to analyze gases locked in tiny dust grains about a quarter of a billionth of a gram in weight. As a first step, the researchers heated the grains to about 1,400 degrees C., liberating gases imprisoned for eons.

"The particles probably came from the first million years or even less, of the solar system's existence," Pepin said. That would be close to 4.6 billion years ago. If our middle-aged sun were 50 years old, then the particles were born in the first four days of its life.


Source: University of Minnesota

Explore further: Science on the surface of a comet

Related Stories

Science on the surface of a comet

July 31, 2015

Complex molecules that could be key building blocks of life, the daily rise and fall of temperature, and an assessment of the surface properties and internal structure of the comet are just some of the highlights of the first ...

Space Kombucha in the search for life and its origin

July 30, 2015

You might know it as a drink for hipsters or as an ancient brew drunk for centuries in Eurasia, but the culture that ferments sugary tea into Kombucha is going around the world. Bolted to the outside of the International ...

Annual Perseid meteor shower promises a fine display

July 29, 2015

The annual Perseid meteor shower is one of the best and most reliable meteor showers of the year. It peaks every year around the 12th/13th August, and under ideal conditions produces a maximum frequency of meteors, or zenith ...

Why is life left-handed? The answer is in the stars

July 21, 2015

While most humans are right-handed, our proteins are made up of lefty molecules. In the same way your left and right hands mirror one another, molecules can assemble in two reflected structures. Life prefers the left-handed ...

Recommended for you

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1.3 / 5 (3) Jan 04, 2008
Not much info here. What implications are there for the earth's oceans formation?
seanpu
1 / 5 (2) Jan 04, 2008
"while the comet formed in the icy fringes of the solar system" no info on why they thought this
"the dust appears to have been born close to the infant sun " why draw that conclusion?
"bombarded by intense radiation from these and other gases" oh really?
"before being flung out beyond Neptune and trapped in the comet." hmm. why do they think that?

Zenmaster
1 / 5 (1) Jan 04, 2008
These findings (and recent others) seem to support Oliver K. Manuel's observations.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.