Researchers identify a means of controlling a parasite that kills and eats human cells

January 18, 2008

Researchers from the University of Virginia and the University of Vermont have discovered a means of inhibiting one of the world’s most voracious parasites. The study, published Friday, January 18 in PLoS Pathogens, targets a protein which aids the parasite in ingestion of immune cell corpses.

Entamoeba histolytica, which causes inflammation of the colon (colitis), plays dirty. It attacks and kills human immune cells in seconds. Then the parasite hides the evidence by eating the cells’ corpses. While doing so, it kills nearly 100,000 people each year.

The research team, led by Dr. William Petri, hypothesized that identifying molecules involved in the corpse ingestion might provide insight into how the amebae cause colitis in children.

The team identified a particular protein on the surface of the ameba called a kinase, PATMK. Using a special technique called RNA interference to inhibit the actions of this kinase, they prevented the ameba from eating dead cells.

“By blocking this kinase, we have for the first time prevented the ameba from colonizing and invading the gut,” said Dr. Petri. “This means that we are a step closer to preventing this disease, which wreaks havoc among children worldwide.”

“Infection and further invasion into the gut require the clearance of dead cells in order to prevent immune recognition of the damaged tissue,” says fellow researcher Douglas Boettner. “PATMK is the first individual member of a large family of proteins to be assigned a function related to the clearance of dying tissue during pathogenesis.”

This protein may be a pivotal vaccination target because these preliminary studies show that alterations in PATMK function reduces progression of amoebiasis in mice, Boettner added. “A vaccine that ultimately would prevent this amoeba from clearing the damaged host may attract helpful immune cells which may recognize and eliminate this infection.”

On a global basis, amebiasis affects approximately 50 million people each year, causing diarrhea, malnutrition and nearly 100,000 deaths.

This work shows how infection is dependent upon the ameba’s consumption of dead cells. By identifying the molecule that controls eating, scientists are one step closer to the ultimate goal of preventing disease caused by this parasite.

Source: Public Library of Science

Explore further: Scientists detail progressive organization of immune efficiency in lungfish

Related Stories

Label-free technique that images DNA in vivo

September 9, 2015

(—A group of researchers from Harvard University report being able to observe DNA dynamics during cell division in vivo using time-lapse stimulated Raman scattering microscopy and without using fluorescent labels. ...

Study describes underlying cause of diabetes in dogs

August 17, 2015

In a new effort, researchers from the University of Pennsylvania and Baylor College of Medicine have used advanced imaging technology to fill in details about the underlying cause of canine diabetes, which until now has been ...

Recommended for you

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.

Toyota promises better mileage and ride with Prius hybrid

October 13, 2015

Toyota Motor Corp. released details for its fourth-generation Prius on Tuesday, promising that improvements in the battery, engine, wind resistance and weight mean better mileage for the world's top-selling hybrid car.

What happens when your brain can't tell which way is up?

October 13, 2015

In space, there is no "up" or "down." That can mess with the human brain and affect the way people move and think in space. An investigation on the International Space Station seeks to understand how the brain changes in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.