NIST develops test method for key micromechanical property

January 9, 2008

Engineers and researchers designing and building new microelectromechanical systems (MEMS) can benefit from a new test method developed at the National Institute of Standards and Technology to measure a key mechanical property of such systems: elasticity. The new method determines the “Young’s modulus” of thin films not only for MEMS devices but also for semiconductor devices in integrated circuits.

Since 1727, scientists and engineers have used Young’s modulus as a measure of the stiffness of a given material. Defined as the ratio of stress (such as the force per unit area pushing on both ends of a beam) to strain (the amount the beam is deflected), Young’s modulus allows the behavior of a material under load to be calculated.

Young’s modulus predicts the length a wire will stretch under tension or the amount of compression that will buckle a thin film. A standard method to determine this important parameter—a necessity to ensure that measurements of Young’s modulus made at different locations are comparable—has eluded those who design, manufacture and test MEMS devices, particularly in the semiconductor industry.

A team at NIST recently led the effort to develop SEMI Standard MS4-1107, “Test Method for Young’s Modulus Measurements of Thin, Reflecting Films Based on the Frequency of Beams in Resonance.” The new standard applies to thin films (such as those found in MEMS materials) that can be imaged using an optical vibrometer or comparable instrument for non-contact measurements of surface motion.

In particular, measurements are obtained from resonating beams—comprised of the thin film layer—that oscillate out-of-plane. The frequency at which the maximum amplitude (or velocity) of vibration is achieved is a resonance frequency, which is used to calculate the Young’s modulus of the thin film layer. The group also developed a special Web-based “MEMS calculator” (www.eeel.nist.gov/812/test-structures/MEMSCalculator.htm>) that can be used to determine specific thin film properties from data taken with an optical interferometer.

Knowledge of the Young’s modulus values and the residual strain (using ASTM International Standard E 2245) for thin film layers can lead to calculations of residual stress, which in turn, enable semiconductor manufacturers to develop circuit design strategies, fabrication systems and post-processing methods that could increase fabrication yield by reducing the frequency of failures from electromigration, stress migration and delamination.

Source: National Institute of Standards and Technology

Explore further: Stiffness and hardness of sheep molar enamel is lower than that of humans

Related Stories

Vibrating nanorods measure thin films for microcircuits

December 10, 2010

(PhysOrg.com) -- A key step in many nanofabrication processes is to create thin films, sometimes only one molecule thick, by a method known as atomic layer deposition. Researchers at Cornell and Tel Aviv University have developed ...

Recommended for you

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.