Neutron stars can be more massive, while black holes are more rare

Jan 14, 2008

Neutron stars and black holes aren’t all they’ve been thought to be. In fact, neutron stars can be considerably more massive than previously believed, and it is more difficult to form black holes, according to new research developed by using the Arecibo Observatory in Arecibo, Puerto Rico. Paulo Freire, an astronomer from the observatory, will present his research at the American Astronomical Society national meeting in Austin on Jan. 11.

The Arecibo Observatory is managed by Cornell University for the National Science Foundation.

In the cosmic continuum of dead, remnant stars, the Arecibo astronomers have increased the mass limit for when neutron stars turn into black holes.

“The matter at the center of a neutron star is highly incompressible. Our new measurements of the mass of neutron stars will help nuclear physicists understand the properties of super-dense matter,” said Freire. “It also means that to form a black hole, more mass is needed than previously thought. Thus, in our universe, black holes might be more rare and neutron stars slightly more abundant.”

When the cores of massive stars run out of nuclear fuel, their enormous gravitation then causes their collapse then becomes a supernova. The core, typically with a mass 1.4 times larger than that of the sun is compressed into a neutron star. These extreme objects have a radius about 10 to 16 kilometers and a density on the order of a billion tons per cubic centimeter. Freire says that a neutron star is like one single, giant atomic nucleus with about 460,000 times the mass of the Earth.

Astronomers had thought the neutron stars needed a maximum mass between 1.6 and 2.5 suns in order to collapse and become black holes. However, this new research shows that neutron stars remain neutron stars between the mass of 1.9 and up to possibly 2.7 suns.

“The matter at the center of the neutron stars is the densest in the universe. It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don’t know what it is made out of,” said Freire. “For that reason, we have at present no idea of how large or how massive neutron stars can be.”

From June 2001 to March 2007, Freire used Arecibo’s “L-wide” receiver (sensitive to radio frequencies from 1100 to 1700 MHz) and the Wide-Band Arecibo Pulsar Processors – a very fast spectrometer on the Arecibo telescope – to examine a binary pulsar called M5 B, in the globular cluster M5, which is located in the constellation Serpens.

Like a lighthouse emits light, a pulsar is a strongly magnetized neutron star that emits large amounts of electromagnetic radiation, usually from its magnetic pole. As in the case of a lighthouse, distant observers perceive a sequence of pulsations, which are caused by the rotation of the pulsar. In the case of M5 B, these radio pulsations arrive at the Earth every 7.95 milliseconds.

These radio pulsations were scanned by the wide-band spectrometers once every 64 microseconds for 256 spectral channels, and then recorded to a computer disk, with accurate timing information. The precise arrival time of the pulses were then used by the astronomers to accurately measure the orbital motion of M5 B about its companion. This allowed the astronomers to estimate the mass (1.9 solar masses) of the pulsar.

Source: Cornell University

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Dedication of Advanced LIGO

May 19, 2015

The Advanced LIGO Project, a major upgrade that will increase the sensitivity of the Laser Interferometer Gravitational-wave Observatories instruments by a factor of 10 and provide a 1,000-fold increase in the number of astrophysical ...

Magnetar near supermassive black hole delivers surprises

May 14, 2015

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA's Chandra ...

Pulsar with widest orbit ever detected

May 01, 2015

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT). ...

Recommended for you

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Galaxy's snacking habits revealed

May 20, 2015

A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

brant
not rated yet Jan 14, 2008
Darned, I thought they were going to say "dark matter" in there somewhere.
KB6
1 / 5 (1) Jan 15, 2008
"It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don't know what it is made out of...".
---
That's the most interesting part of the article.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.