With a jolt, 'nanonails' go from repellant to wettable

January 29, 2008
With a jolt, 'nanonails' go from repellant to wettable
Liquid beads on a surface composed of silicon "nanonails." Made by Tom Krupenkin and J. Ashley Taylor of University of Wisconsin-Madison's Department of Mechanical Engineering, the surface repels virtually all liquids, including water, oil, solvents and detergents. When an electrical current is applied, the liquid slips past the nail heads and between the shanks to wet the entire surface. According to Krupenkin, the nails create such a rough surface at the nanoscale that liquids only touch the surface at the extreme ends of the forest of nails, so the liquid is like sitting on a bed of air. Photo by: courtesy Tom Krupenkin/University of Wisconsin-Madison

Sculpting a surface composed of tightly packed nanostructures that resemble tiny nails, University of Wisconsin-Madison engineers and their colleagues from Bell Laboratories have created a material that can repel almost any liquid.

Add a jolt of electricity, and the liquid on the surface slips past the heads of the nanonails and spreads out between their shanks, wetting the surface completely.

The new material, which was reported this month in Langmuir, a journal of the American Chemical Society, could find use in biomedical applications such as "lab-on-a-chip" technology, the manufacture of self-cleaning surfaces, and could help extend the working life of batteries as a way to turn them off when not in use.

UW-Madison mechanical engineers Tom Krupenkin and J. Ashley Taylor and their team etched a silicon wafer to create a forest of conductive silicon shanks and non-conducting silicon oxide heads. Intriguingly, the ability of the surface of the structure to repel water, oil, and solvents rests on the nanonail geometry.

"It turns out that what's important is not the chemistry of the surface, but the topography of the surface," Krupenkin explains, noting that the overhang of the nail head is what gives his novel surface its dual personality.

A surface of posts, he notes, creates a platform so rough at the nanoscale that "liquid only touches the surface at the extreme ends of the posts. It's almost like sitting on a layer of air."

Source: University of Wisconsin-Madison

Explore further: Scientists work on an alternative to carry data

Related Stories

Scientists work on an alternative to carry data

August 12, 2016

Installing new optical fibres is expensive. So network operators want to make better use of their existing capacities. A new type of laser diode from Darmstadt could help. It has now been put into practice with the industry.

SLAC receives new mirrors for X-ray laser

August 3, 2016

Scientists are installing new mirrors to improve the quality of the X-ray laser beam at the Department of Energy's SLAC National Accelerator Laboratory.

What do aliens look like? The clue is in evolution

August 19, 2016

Speculating about what aliens look like has kept children, film producers and scientists amused for decades. If they exist, will extra terrestrials turn out to look similar to us, or might they take a form beyond our wildest ...

Graphene could revolutionize the Internet of Things

July 8, 2016

PFL researchers have produced a tunable, graphene-based device that could significantly increase the speed and efficiency of wireless communication systems. Their system works at very high frequencies, delivering unprecedented ...

New catalyst for hydrogen production

July 27, 2016

With the aid of platinum catalysts, it is possible to efficiently produce hydrogen. However, this metal is rare and expensive. Researchers have discovered an alternative that is just as good, but less costly.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.