Genetic Material under a Magnifying Glass

January 28, 2008

The genetic alphabet contains four letters. Although our cells can readily decipher our genetic molecules, it isn’t so easy for us to read a DNA sequence in the laboratory. Scientists require complex, highly sophisticated analytical techniques to crack individual DNA codes.

Volker Deckert and his team at the Institute for Analytical Sciences (ISAS) in Dortmund have recently developed a method that could provide a way to directly sequence DNA. Their process is based on a combination of Raman spectroscopy and atomic force microscopy. As reported in the journal Angewandte Chemie, Deckert and Elena Bailo have successfully analyzed DNA’s closest relative, RNA.

Direct sequencing means that the letters of the genetic code are read directly, as if with a magnifying glass. A DNA or RNA strand has a diameter of only two nanometers, so the magnification must be correspondingly powerful. Deckert’s team uses an atomic force microscope to achieve this degree of magnification. Steered by the microscope, a tiny, silvered glass tip moves over the RNA strand.

A laser beam focused on the tip excites the section of the strand being examined and starts it vibrating. The spectrum of the scattered light (Raman spectrum) gives very precise information about the molecular structure of the segment. Each genetic “letter”, that is, each of the nucleic acids, vibrates differently and thus has a characteristic spectral “fingerprint”.

The direct resolution of individual bases has not been attainable, but is also not necessary. The tip only has to be moved over the RNA strand at intervals corresponding to about the base-to-base distance. Even if the measured data then consist of overlapped spectra from several neighboring bases, the information can be used to derive the sequence of the RNA.

If this method, known as tip-enhanced Raman spectroscopy (TERS), can be extended to DNA, it could revolutionize the decoding of genetic information. Previous methods for sequencing DNA are highly complex, work indirectly, and require a large sample of genetic material. In contrast, the TERS technique developed by Deckert directly “reads” the code without chemical agents or detours. It also requires only a single strand of DNA. “DNA sequencing could become very simple,” says Deckert, “like reading a barcode at the supermarket.”

Citation: Volker Deckert, Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method, Angewandte Chemie International Edition, doi: 10.1002/anie.200704054

Source: Angewandte Chemie

Explore further: Atlas of the RNA universe takes shape

Related Stories

Atlas of the RNA universe takes shape

December 7, 2016

As the floor plan of the living world, DNA guides the composition of animals ranging from unicellular organisms to humans. DNA not only helps shepherd every organism from birth through death, it also plays an essential role ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.