'Electronic switch' opens doors in rheumatoid joints

Jan 02, 2008

A breakthrough in understanding the way atoms move across cell membranes in the human body could pave the way for the development of new treatments for inflammatory diseases such as rheumatoid arthritis.

Scientists at the University of Leeds have identified a previously unknown natural mechanism that opens ion channels – proteins at the cell surface that act as doorways into and out of cells – through the naturally occurring protein thioredoxin.

Ion channels allow movement of ions - electrically charged atoms - across the cell membrane to carry out various functions such as pain transmission, timing of the heart beat, and regulation of blood glucose. Often, they need to be stimulated to open and, until now, two main groups of activating mechanisms have been acknowledged: changes in cell voltage and binding of chemical factors.

In a paper published today (03 January) in Nature, Professor Beech and colleagues from the University’s Faculty of Biological Sciences reveal that thioredoxin works in a different manner: it activates an ion channel by donating electrons to it, in a process Professor Beech likens to “an electronic on-switch”.

“Thioredoxin is naturally present in cells and is secreted to help the body counter stressful chemical reactions that occur in inflammation, which can damage cells,” he explains. “We already knew that inflammatory diseases cause the production of high levels of thioredoxin – in fact with rheumatoid arthritis, it’s striking how much is present in affected joints. But we didn’t know until now that thioredoxin can also activate ion channels, conferring additional protective potential and offering opportunities for mimicking the effect with drugs.”

“It would seem that the body’s own natural defences have provided us with new understanding that could be significant in the development of future treatments for arthritis and related diseases,” he says.

Source: University of Leeds

Explore further: Two red panda cubs born at Chicago's Lincoln Park Zoo

Related Stories

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

A nano-transistor assesses your health via sweat

May 15, 2015

Made from state-of-the-art silicon transistors, an ultra-low power sensor enables real-time scanning of the contents of liquids such as perspiration. Compatible with advanced electronics, this technology ...

Recommended for you

Single-celled predator evolves tiny, human-like 'eye'

8 hours ago

A single-celled marine plankton evolved a miniature version of a multi-cellular eye, possibly to help see its prey better, according to University of British Columbia (UBC) research published today in Nature.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.