CMS celebrates the lowering of its final detector element

January 22, 2008

In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERN’s Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration, as the experiment is the first of its kind to be constructed above ground and then lowered, element by element, 100 metres below. It marks the culmination of eight years of work in the surface hall, and moves CMS into final commissioning before registering proton-proton collisions at the LHC.

The journey started 14 months ago, when the first of 15 elements of the CMS detector was carefully lowered, with just a few centimetres of leeway, by a huge gantry crane, custom-built by the VSL group. The final element is an asymmetrical cap that fits into the barrel element of the experiment and weighs around 1430 tonnes. It includes fragile detectors that will help identify and measure the energy of particles created in LHC collisions.

“CMS is unique in the way that the detector was constructed in very large elements in a surface assembly building and then lowered underground”, explained Austin Ball, CMS Technical Coordinator. “This is likely to become a model for future experiments, as the technique can now be considered proven.”

There are many advantages to planning an experiment in this way, such as the ability to save time by working simultaneously on the detector while the experimental cavern was being excavated. There were also fewer risks when working on the surface, and elements of detector could be tested together before lowering them.

Experiments at the LHC will allow physicists to take a big leap on a journey that started with Newton's description of gravity. Gravity is ubiquitous since it acts on mass, but so far science is unable to explain why particles have the masses they have. Experiments such as CMS may provide the answer.

LHC experiments will also probe the mysterious missing mass and dark energy of the Universe, they will investigate the reason for nature's preference for matter over antimatter, probe matter as it existed close to the beginning of time and look for extra dimensions of spacetime.

“This is a very exciting time for physics,” said CMS spokesman Tejinder Virdee, “the LHC is poised to take us to a new level of understanding of our Universe.”

Source: CERN

Explore further: LHC completes proton run for 2015, preps for lead

Related Stories

LHC completes proton run for 2015, preps for lead

November 4, 2015

The Large Hadron Collider (LHC) has successfully completed its planned proton run for 2015, delivering the equivalent of about 400 trillion (1012) proton-proton collisions – some 4 inverse femtobarns of data – to both ...

Engineers refine protection system for LHC magnets

September 4, 2015

This week, the Large Hadron Collider (LHC) was switched off for its second scheduled technical stop since starting to run at the new high energy of 6.5 teraelectronvolts (TeV) per beam. These regular stops allow engineers ...

First physics from the Large Hadron Collider's CMS detector

February 17, 2010

( -- Scientists working on the CMS experiment at the CERN LHC have just published results of the first analysis of data from the highest energy particle collisions ever carried out, bringing us another step closer ...

Hunt for dark matter closes in at Large Hadron Collider

January 26, 2011

( -- Physicists are closer than ever to finding the source of the Universe's mysterious dark matter, following a better than expected year of research at the Compact Muon Solenoid (CMS) particle detector, part ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.